首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Habitat specialists maximize their fitness by using a subset of the habitats that are potentially available to them and fare poorly if they move elsewhere. The factors that constrain habitat use are diverse and often difficult to identify, but are important to distinguish if we are to understand the trade-offs that drive species to become specialists. In the present study, we investigated habitat use in a fossorial skink, Lerista labialis , and explore the factors that confine it to the crests of sand dunes in the Simpson Desert, central Australia. Models positing that L. labialis selects dune crests because of their sparse cover of vegetation, more favourable temperatures, and greater abundance of preferred prey, received no support. Instead, a model positing that dune crests provide soft and less compacted sand that facilitates movement by L. labialis , was strongly supported. Sand on the crests was consistently softer that that on the sides and swales of the dunes; the skinks preferred soft rather than hard sand for movement in captivity, and were captured more often on experimentally softened sand than on compacted sand in the field. There was no evidence that L. labialis responds to attributes of the substrate other than softness because captive animals used loose sand from the dune crests, sides, and swales equally. We suggest that the dune crest environment allows L. labialis to reduce the energetic costs of locomotion, provides priority of access to the subterranean galleries of its termite prey, and also a secure refuge from surface-active predators and extreme surface temperatures.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 531–544.  相似文献   

2.
Behaviour of large perch Perca fluviatilis was studied in two lakes differing in environmental state i.e. mesotrophic v. hypereutrophic. A total of 20 adult perch P. fluviatilis (29–42 cm total length) in each lake were tagged with radio‐transmitters, tracked and located eight times a day during six 24 h tracking periods over a year, enabling detection of differences in diel activity patterns and habitat use during summer and winter under two different environmental regimes. During summer, P. fluviatilis in the mesotrophic lake showed a distinct crepuscular activity pattern and a change from pelagic residency during daytime towards the littoral zone at night. In contrast, P. fluviatilis in the hypereutrophic lake were active during the entire diel cycle and were spread throughout the lake also during dark. During winter, crepuscular patterns of activity were seen in both lakes. Condition factor of large P. fluviatilis did not differ between the two lakes. Thus, it is suggested that P. fluviatilis in the hypereutrophic turbid lake adopted an alternative behaviour for successful foraging, being uniformly active throughout the diel cycle.  相似文献   

3.
SUMMARY 1. Radio transmitters were implanted in large perch (27–37 cm) in a shallow lake in Denmark. Between 6 and 13 perch were tracked every 3 h for 24‐h periods twice (summer) or once a month (winter) from August 1997 to July 1998. Activity levels were recorded as minimum distance moved per hour. 2. No significant differences in activity levels of individual fish were observed. 3. Highest activities were observed at daytime with peaks at dawn and dusk or midday. This diel pattern was most pronounced from October to April, whereas diel variations were less in the summer months, with no peaks occurring in midsummer. The general lack of activity at night supports the idea that perch is a visually oriented forager. 4. There was no significant relationship between daytime activity during the year and temperature or day length, but nighttime activity was correlated with temperature. In contrast with previous findings, activity levels varied little seasonally, except for high activity levels that occurred concomitantly with high temperatures in August. Instead, we found a significant relationship between the total distances moved per day and temperature, indicating that perch moved at the same average speed in the wintertime, but did so for shorter periods than in summer because of shorter day lengths. 5. Diet of the tagged perch shifted from fish dominance between August and January to invertebrates from February to June. There was no correlation between the diet shift and activity levels, indicating that feeding on invertebrate requires similar activity levels as predation on fish. 6. The results of this telemetry study throughout a year suggest that perch are more active during the winter than previously inferred from gill‐net catches. This observation underscores the importance of perch as a predator of 0+ planktivorous fish in lakes and has potential implications for pelagic food web structure and lake management by biomanipulation.  相似文献   

4.
Resuspension in a shallow eutrophic lake   总被引:11,自引:7,他引:11  
The frequency and the importance of wind-induced resuspension were studied in the shallow, eutrophic Lake Arresø, Denmark (41 km2, mean depth 3 m). During storm events in autumn 1988 lake water samples were collected every 2–8 hours by an automatic sampler at a mid-lake station. The concentration of suspended solids and Tot-P was found to increase markedly. During storms up to 2 cm of the superficial sediment was resuspended, and the concentration of resuspended solids in the water column rose to 140 mg l–1. The resuspended particles had a relatively high settling velocity and on average, a relatively short residence time in the water column of 7 hours.A model which describes the concentration of resuspended solids as a function of wind velocity and of settling velocity of the resuspended particles is presented. Using additional wind velocity data from a nearby meteorological station, the model has been used to calculate the frequency of resuspension events and concentration of resuspended solids for the period from May to November 1988.These calculations show that resuspension occurred about 50% of the time. Average flux of suspended solids from the sediment to the water was 300 g m–2 d–1 and during 50% of the time lake water concentration of suspended solids was more than 32 mg l–1. A relationship between concentration of suspended solids and Secchi-depth is presented. Because of resuspension, Secchi-depth in Lake Arresø is reduced to 0.5 m.Resuspension also had a marked effect on Tot-P concentration in the lake water, and P input to the lake water being totally dominated by resuspension events.  相似文献   

5.
1. Research has often focused on the pelagic areas of lakes; the littoral zone has received less attention. The few studies concerning fish distribution in littoral habitats have concentrated on stands of submersed macrophytes, whereas other littoral habitat types have seldom been investigated. 2. This study aimed to predict the occurrence of juvenile fish in several littoral habitats of a shallow lake as a function of food availability, complexity of habitat structure, water depth and substrate. Habitats comprising reed, woody structures, and two open water areas differing in depth were sampled for fish and invertebrate biomasses on two shores, over 6 months and during both daylight and at night. 3. The juvenile fish community consisted almost exclusively of 0+ and 1+ roach and perch. There was a strong diel component in habitat use, with a predominant occurrence of fish in complex habitats (mainly woody structures) during the day, and a partial migration towards the open habitats at night, more strongly expressed in roach than in perch. 4. The diet of all fish groups was relatively constant over the seasonal cycle, and was independent of habitat. There was a higher degree of planktivory in roach than in perch, but both species fed on benthic macroinvertebrates to a substantial extent. 5. According to a logistic regression model, the biomass of potential food organisms in the different habitats had little predictive effect on the spatial distribution of the fish, whereas the structural complexity of the habitats combined with the diel cycle explained about 28% of the occurrence patterns in 0+ and 1+ perch and 1+ roach.  相似文献   

6.
1. Return of large‐bodied zooplankton populations is of key importance for creating a shift from a turbid to a clear‐water state in shallow lakes after a nutrient loading reduction. In temperate lakes, recovery is promoted by submerged macrophytes which function as a daytime refuge for large zooplankton. However, recovery of macrophytes is often delayed and use of artificial plant beds (APB) has been suggested as a tool to enhance zooplankton refuges, thereby reinforcing the shift to a clear‐water state and, eventually, colonisation of natural plants. 2. To further evaluate the potential of APB in lake restoration, we followed the day–night habitat choices of zooplankton throughout summer in a clear and a turbid lake. Observations were made in the pelagic and littoral zones and in APB in the littoral representing three different plant densities (coverage 0%, 40% and 80%). 3. In the clear lake, the zooplankton (primarily Daphnia) were mainly found in the pelagic area in spring, but from mid‐May they were particularly abundant in the APB and almost exclusively so in mid‐June and July, where they appeared in extremely high densities during day (up to 2600 ind. L−1). During night Daphnia densities were overall more equally distributed between the five habitats. Ceriodaphnia was proportionally more abundant in the APB during most of the season. Cyclopoids were more abundant in the high APB during day but were equally distributed between the five habitats during night. 4. In the turbid lake, however, no clear aggregation was observed in the APB for either of the pelagic genera (Daphnia and Bosmina). This may reflect a higher refuge effect in the open water due to the higher turbidity, reduced ability to orient to plant beds and a significantly higher fish density (mainly of roach, Rutilus rutilus, and perch, Perca fluviatilis) in the plant beds than in the clear lake. Chydorus was found in much higher proportions among the plants, while cyclopoids, particularly the pelagic Cyclops vicinus, dominated in the pelagic during day and in the pelagic and high density plants during night. 5. Our results suggest that water clarity is decisive for the habitat choice of large‐bodied zooplankton and that introduction of APB as a restoration measure to enhance zooplankton survival is only a useful tool when water clarity increases following loading reduction. Our results indicate that dense APB will be the most efficient.  相似文献   

7.
Scruton  D. A.  Clarke  K. D.  Ollerhead  L. M. N.  Perry  D.  McKinley  R. S.  Alfredsen  K.  Harby  A. 《Hydrobiologia》2002,483(1-3):71-82
Neodiaptomus songkhramensis n. sp. from 86 temporary waters in the vicinity of Song Khram River in northeast Thailand is described and figured. It was found during May and June (rainy season) in Sakon Nakhon, Nakhon Pranom and Udon Thani Provinces. The new species usually co-occurs with 1–5 other diaptomids; the most frequently co-occurring species are Neodiaptomus blachei, Tropodiaptomus oryzanus, Neodiaptomus yangtsekiangensis, Dentodiaptomus javanus and Eodiaptomus phuphanensis.  相似文献   

8.
Habitat selection and spatial usage are important components of animal behavior influencing fitness and population dynamic. Understanding the animal–habitat relationship is crucial in ecology, particularly in developing strategies for wildlife management and conservation. As this relationship is governed by environmental features and intra‐ and interspecific interactions, habitat selection of a population may vary locally between its core and edges. This is particularly true for central place foragers such as gray and harbor seals, where, in the Northeast Atlantic, the availability of habitat and prey around colonies vary at local scale. Here, we study how foraging habitat selection may vary locally under the influence of physical habitat features. Using GPS/GSM tags deployed at different gray and harbor seals’ colonies, we investigated spatial patterns and foraging habitat selection by comparing trip characteristics and home‐range similarities and fitting GAMMs to seal foraging locations and environmental data. To highlight the importance of modeling habitat selection at local scale, we fitted individual models to colonies as well as a global model. The global model suffered from issues of homogenization, while colony models showed that foraging habitat selection differed markedly between regions for both species. Despite being capable of undertaking far‐ranging trips, both gray and harbor seals selected their foraging habitat depending on local availability, mainly based on distance from the last haul‐out and bathymetry. Distance from shore and tidal current also influenced habitat preferences. Results suggest that local conditions have a strong influence on population spatial ecology, highlighting the relevance of processes occurring at fine geographical scale consistent with management within regional units.  相似文献   

9.
Measuring the benefit of habitat selection   总被引:1,自引:0,他引:1  
We used a behavioral bioassay to estimate the advantages thattwo species of gerbils (Gerbillus allenbyi and G. pyramidum)experienced by preferring a semistabilized dune habitat overa stabilized sand habitat. We used the magnitude of foragingeffort by the gerbils to signal the difference between thetwo habitats. When they were foraging as much in stabilizedsand as in semistabilized dune, we inferred that these habitatswere providing equivalent rewards. We performed a series ofexperiments in two 1-ha field enclosures, each containing similarproportions of stabilized sand and semistabilized dune. Eachenclosure contained a population of only one of the species.By varying the amount of seeds added (either 0.5, 1, 2, or 3g of seeds in 18 seed trays) to each habitat and monitoringthe behavior of the gerbils, we were able to fit a curve thatreflected the change in habitat preference as a function ofseed addition rate. We were also able to show how much seedaddition had to be added to bring the two habitats into equaluse. Each species required only 13 g/ha/night to entirely offsetthe advantage of the semistabilized dune.  相似文献   

10.
Diet composition and habitat selection of eland in semi-arid shrubland   总被引:1,自引:1,他引:1  
This study investigated the diet composition and habitat selection of eland in semi-arid shrubland, dominated by microphyllous and leptophyllous browse species offering low leaf: stem ratios. Browse (succulent, forb and woody species) contributed 94% to the annual diet of eland. The annual proportion of grass in eland diet was low (6%), even though palatable grass species were abundant in habitats favoured by eland. Most grass was eaten in the early wet season when grasses offered young green foliage. Woody species comprising dwarf shrubs and shrubs made up the bulk of the food eaten by eland. In each season, favoured woody species contributed substantial proportions to the diet of eland. Eland used the plateau habitats in the early wet season, but valleys and slopes in the late wet and dry seasons. Habitats favoured by eland contained high abundances of plants of woody species favoured by eland. Chemical analysis indicated that woody species favoured by eland offered lower total fibre contents than other woody species available to eland. The results of the study indicated that eland are browsers that select browse of low fibre content.  相似文献   

11.
12.
We have studied the diversity of pelagic cyanobacteria in Lake Loosdrecht, The Netherlands, through recovery and analysis of small subunit ribosomal RNA gene sequences from lake samples and cyanobacterial isolates. We used an adapted protocol for specific amplification of cyanobacterial rDNA for denaturing gradient gel electrophoresis (DGGE) analysis. This protocol enabled direct comparison of cyanobacterial community profiles with overall bacterial profiles. The theoretical amplification specificity of the primers was supported by sequence analysis of DNA from excised DGGE bands. Sequences recovered from these bands, in addition to sequences obtained by polymerase chain reaction (PCR) and cloning from lake DNA as well as from cyanobacterial isolates from the lake, revealed a diverse consortium of cyanobacteria, among which are representatives of the genera Aphanizomenon, Planktothrix, Microcystis and Synechococcus. One numerically important and persistent cyanobacterium in the lake, Prochlorothrix hollandica, appeared to co-occur with an unknown but related species. However, the lake is dominated by filamentous species that originally have been termed 'Oscillatoria limnetica-like'. We show that this is a group of several related cyanobacteria, co-occurring in the lake, which belong to the Limnothrix/Pseudanabaena group. The available variation among the coexisting strains of this group can explain the persistent dominance of the group under severe viral pressure.  相似文献   

13.
Fish may alter their habitat use in accordance with the profitability of differing habitat patches. During summer, in the River Frome, minnows Phoxinus phoxinus used shallows in a selective manner, preferring shallows in which water temperature was higher than the ambient river temperature. During the morning and evening, the minnows occasionally entered the shallows but did not linger. They spent considerably longer periods in the shallows when water temperature was greater than in the main channel of the river. During these periods the minnows were inactive. Gut fullness of wild minnows varied temporally and on one occasion spatially, with gut fullness rising rapidly after dawn and remaining high throughout the day. Minnows held in enclosures in the river had significantly higher gut fullness than those held in the shallows. The minnows use shallows that are warmer than the adjacent river preferentially but must return to the river to feed. Thus, there is evidence for a trade-off between a habitat with high prey density, but low temperature and a low prey density, warmer habitat.  相似文献   

14.
Habitat use of three sympatric whitefish Coregonus lavaretus forms was determined using hydroacoustics, pelagic trawling and epibenthic gillnetting in the subarctic Lake Muddusjärvi during the day and night in June, August and September. Whitefish constituted 97% of the numerical catches and whitefish with high number of gill rakers (DR) were the most abundant whitefish form. Forms with low numbers of gill rakers used only epibenthic habitats during both the day and night in all study periods: large whitefish with low numbers of gill rakers (LSR) dwelled mainly at depths 0–10 m, whereas small whitefish with low numbers of gill rakers (SSR) used deeper (>10 m) habitats. LSR and SSR whitefish consumed mainly benthic macroinvertebrates during all study occasions. The planktivorous DR whitefish used both epibenthic and pelagic habitats, but vertical habitat selection varied both over time of day and season. In June, when light intensity was continuously high, DR whitefish did not perform diel vertical migrations. In August and September, when dark nights were distinguishable, DR whitefish ascended from the bottom to the pelagic at dusk to feed on zooplankton, and descended at dawn. DR whitefish used pelagic habitats only at the lowest light intensities during the night, which was probably related to the high predation risk from brown trout Salmo trutta .  相似文献   

15.
Summary 1. Fish excretion can be an important source of nutrients in aquatic ecosystems. Nitrogen (N) and phosphorus (P) excretion rates are influenced by many factors, including fish diet, fish growth rate and fish size. However, the relative influence of these and other factors on community‐level excretion rates of fish is unknown. 2. We used bioenergetics modeling to estimate excretion rates of eight fish species in a shallow, Minnesota (U.S.A.) lake over four months in both 2004 and 2005. Excretion rates of each species were summed for community‐level N and P excretion rates, as well as the N : P ratio of excretion. We then used a model‐selection approach to assess ability of independent variables to predict excretion rates, and to identify the most parsimonious model for predicting N : P excretion ratios and P and N excretion rates at the community scale. Predictive models were comprised of the independent variables water temperature and average fish density, fish size, fish growth rate, nutrient content of fish and nutrient content of fish diets at the community scale. 3. Fish density and nutrient content of fish diets (either N or P) were the most parsimonious models for predicting both N and P excretion rates, and explained 96% and 92% of the variance in N and P excretion, respectively. Moreover, fish density and nutrient models had 1400‐fold more support for predicting N and 21‐fold more support for predicting P excretion relative to models based on fish density only. Water temperature, fish size, fish growth rates and nutrient content of fish showed little influence on excretion rates, and none of our independent variables showed a strong relationship with N : P ratios of excretion. 4. Past work has focused on the importance of fish density as a driver of fish excretion rates on a volumetric basis. However, our results indicate that volumetric excretion rates at the community scale will also change substantially in response to changes in relative abundance of fish prey or shifts in relative dominance of planktivores, benthivores, or piscivores. Changes in community‐scale excretion rates will have subsequent influences on algal abundance, water clarity, and other ecosystem characteristics.  相似文献   

16.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

17.
The seasonal periodicity of planktonic diatoms in a shallow eutrophic lake   总被引:12,自引:0,他引:12  
The seasonal periodicity of four species of planktonic diatoms in a small eutrophic lake in the Shropshire-Cheshire Plain, England, is examined. Diatoms typically dominate the spring increase; a second period of growth follows in the summer months. The growth phases are considered in relation to environmental factors in the mere. Of these, light levels appear to be critical in determining the onset of growth and the size of the population maxima, whilst stratification and turbulence play a leading role in the vertical distribution of the algae, and hence, of the growth conditions to which they are exposed. The thermocline is believed to provide a reservoir of diatoms in summer, maintaining them in a position where they are able to gain maximum advantage from increased wind-induced turbulence. Relative specific differences in growth requirements and in behaviour under varying physical conditions are important in determining which species dominate. Dominance may be modified by the effect of attacks by fungal parasites. It is also shown that, generally, nutrients are present in relative abundance, and only rarely does their availability become a limiting factor. Tt is concluded that diatom growth in this lake is typically subject to physical rather than chemical control.  相似文献   

18.
Release of soluble reactive phosphorus (SRP) from dissolved organic phosphorus (DOP), concentrated by reverse osmosis of water samples from Lough Neagh Northern Ireland, was measured in the presence of enzymes and cultures of lake water bacteria in a basal liquid medium adjusted to the pH of lake water (7.6). No hydrolysis of unfractionated DOP was observed in the presence of alkaline phosphatase but a combination of alkaline phosphatase and phosphodiesterase mineralized 14% of DOP in a 30 day incubation period at 15 °C. A similar amount of mineralization was attained by phytase. Phytase induced the same degree of mineralization in a range of DOP fractions varying from MW > 100 000 to c. 500. A mixed culture of lake water bacteria mineralized 12% of unfractionated DOP. Single cultures of lake water bacteria displayed low mineralizing activity (mean of 49 cultures = 5% DOP hydrolysed). Results indicate that DOP from Lough Neagh in the above molecular weight range is predominantly recalcitrant to bacterial mineralization under natural lake conditions.  相似文献   

19.
Effective wildlife management requires an understanding of how individuals select environmental factors, although few studies assess how habitat selection may differ over time or between sexes. During the post-breeding period (15 May to 1 Sep), we tracked 146 male American woodcock (Scolopax minor) in Rhode Island, USA, from 2010–2021 to assess how habitat selection varied over time, and 17 females and 51 males during the final 2 years of the study to document sex-specific differences in habitat selection. Males generally had smaller home ranges (35.0 ± 10.7 [margin of error] ha) and preferred habitat mosaics that consisted of forested wetlands, young forest patches, areas of deciduous forest, moist soils with gentle slopes, and riparian corridors. We detected subtle differences between sexes in selection for wetland young forest, upland young forest, percent slope, distance to upland young forest, distance to streams, and distance to moist soils. During 2020–2021, females tended to have larger home ranges (78.7 ± 46.4 ha) than males (35.0 ± 10.7 ha) and more strongly selected sites closer to riparian corridors, while males selected areas that were closer to upland young forest with flatter slopes than the available surrounding landscape. Such sex-specific differences in habitat selection may be related to males and females prospecting for potential breeding sites during this post-breeding period for the following spring. We used the top-ranked habitat selection models for males and females to produce a spatially explicit state-wide map that identifies low-to-high likelihood of use areas that can be used to guide forest management decisions in southern New England to maximize benefits for American woodcock.  相似文献   

20.
The seasonal changes in phytoplankton biomass and species diversity in a shallow, eutrophic Danish lake are described and related to different disturbance events acting on the phytoplankton community.Both the spring diatom maximum and the summer bloom of the filamentous blue-green alga, Aphanizomenon flos-aquae (L.) Ralfs, coincided with low values of phytoplankton species diversity and equitability. Diatom collapse was mainly due to internal modifications as nutrient depletion (Si, P) caused by rapid growth of phytoplankton, and increased grazing activity from zooplankton. A large population of Daphnia longispina O.F. Müller in June effectively removed smaller algal competitors, thus favouring the development of a huge summer bloom (140 mm3 l–1) of Aphanizomenon flos-aquae. Heavy rainfall and storms in late July increased the loss of Apahnizomenon by out-flow and disturbed the stratification of the lake. These events caused a marked decline in phytoplankton biomass but had no effect on species diversity. A second storm period in late August circulated the lake completely and was followed by a rapid increase in phytoplankton diversity, and a change in the phytoplankton community structure from dominance of large, slow-growing K-selected species (Aphanizomenon) to small, fast-growing r-selected species (cryptomonads).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号