首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-acetyltransferase (NAT) is believed to be the rate-limiting enzyme in the synthesis of melatonin from serotonin in the pineal gland. Norepinephrine released from sympathetic nerve endings within the pineal gland stimulates NAT activity and, therefore, melatonin synthesis. When an animal is subjected to a stressful stimulus, it would be expected that the increase in plasma stimulus, it would be expected that the increase in plasma catecholamines originating from the adrenal medulla and/or the sympathetic nervous system would result in a stimulation of pineal NAT activity. Adult male rats were given a 1.5cc injection of physiological saline subcutaneously into the back leg. Compared to non-injected controls, animals stressed in this manner were shown to have significantly lower pineal melatonin content 10 min after the saline injection late in the light phase of the light/dark cycle (at 18.30 h-lights on at 07.00 h). To test this more thoroughly, a time course study was conducted during the dark phase (at 02.00 h-5 hours after lights out) when pineal NAT activity and melatonin levels are either increasing or elevated. NAT activity and melatonin levels in the pineal were significantly depressed in stressed animals as compared to controls by 10 min after the saline injection, and remained so until 60 min after injection. By 90 min they had returned to control values. In the next study the nighttime response of the pineal to stress was compared in intact and adrenalectomized rats. Adrenalectomy prevented the changes in NAT activity and melatonin content associated with the saline injection. Some factor, such as a catecholamine or corticosterone from the adrenal, seems to be eliciting the response in the pineal to the saline injection. It is not known if the factor is acting centrally or directly on the pineal gland.  相似文献   

2.
The effect of melatonin on reproductive function in the rat was studied. Reproductive organ weights and sex hormone levels were compared between sighted controls and animals which were either blinded, blinded and pinealectomized or blinded and immunized against circulating melatonin. Circulating androgens as measured by accessory sexual organ weights were significantly reduced by blinding. This effect was reversed by pinealectomy but not by immunization. Blinding also increased pineal melatonin levels but there were no differences in the plasma levels of luteinizing hormone. Circulating testosterone levels and pineal melatonin levels of immunized animals did not differ from those of blinded controls. These findings confirm reports that pineal stimulation by blinding enhances pineal melatonin content and inhibits accessory sex organ development. Circulating melatonin does not appear to be the mediator of the stimulated pineal's antigonadal effects in the rat since, in contrast to pinealectomy, neutralization of circulating melatonin failed to reverse accessory organ regression.  相似文献   

3.
The influence of subcutaneous implants of melatonin on reproductive organ growth in neonatally testosterone propionate-(TP)-treated, blinded rats was investigated. The testes and accessory sex organs of rats that were TP-treated and blinded grew significantly slower than those of intact control rats. Either treatment of animals with melatonin or pinealectomy partially restored growth of the reproductive organs. In that the effects of melatonin treatment were similar to those of pinealectomy in this experiment model, it is speculated that melatonin may not be the principal pineal antigonadotrophic substance in the male rat.  相似文献   

4.
L Vollrath  H A Welker 《Life sciences》1988,42(22):2223-2229
Previous studies involving physical-immobilization stress in laboratory rats have yielded inconsistent results with respect to melatonin synthesis in the pineal gland. As melatonin formation undergoes circadian and infradian rhythms, the aim of the present study was to examine whether stress experiments exhibit day-to-day variation. Toward this end, groups of male Sprague-Dawley rats were stressed by physical immobilization on eight consecutive days, respectively, or left relatively undisturbed, and killed. The pineal gland was rapidly dissected out and serotonin N-acetyltransferase (NAT) activity and melatonin levels were measured. NAT activity was significantly depressed on experimental days 1, 3 and 5, and slightly depressed on day 7. In addition, both in control and experimental animals NAT activity exhibited statistically significant differences between experimental days. Pineal melatonin levels were less variable. On experimental days 3 and 6 immobilization led to a significant increase of pineal melatonin levels. These results show that day-to-day variation is an important factor that influences the outcome of stress experiments and represent another example that NAT activity and pineal melatonin levels do not always show corresponding changes.  相似文献   

5.
The photosensitive teleost pineal organ exhibits a daily rhythm in melatonin production. In most teleosts, including the pike, this is driven by an endogenous pineal clock. An exception is the trout, in which the pineal melatonin rhythm is a direct response to darkness. This fundamental difference in the regulation of melatonin production in two closely related species provides investigators a novel opportunity to study the molecular mechanisms of vertebrate clock function. We have studied the circadian regulation of mRNA encoding two melatonin synthesis enzymes by Northern blot analysis. These two enzymes are serotonin N-acetyltransferase (AA-NAT), the penultimate enzyme in melatonin synthesis, and tryptophan hydroxylase (TPH), the first enzyme in melatonin synthesis. A clock controls expression of both AA-NAT and TPH mRNAs in the pineal organ of pike, but not that of trout, in which the levels of these mRNAs are tonically elevated. A parsimoneous explanation of this is that a single circadian system regulates the expression of both AA-NAT and TPH genes in most teleosts, and that in trout this system has been disrupted, perhaps by a single mutation.  相似文献   

6.
Twenty-eight-day-old male rats were used in three experiments to study whether cold exposure potentiates pineal actions in nonhibernating mammals. The following questions were considered: (a) Can cold exposure increase the antigonadal effects of light deprivation? (b) Are the effects induced by blindness plus cold exposure pineal dependent? (c) Can cold exposure modify the response of the endocrine-reproductive axis to exogenously administered melatonin? Blind cold-exposed rats showed a significant loss in body weight as well as in weights of pituitary and reproductive tract organs compared with either intact or blind animals kept at 22 degrees C, or intact rats exposed to cold; serum testosterone levels were also lowest in blind cold-exposed rats. These effects were not present in blind cold-exposed animals that were pinealectomized at the beginning of the experiment. When intact animals placed at 22 or 10 degrees C were treated with daily injections of melatonin (50 micrograms) there was a reduction of body weight and weights of the hypophyso-gonadal axis organs. Those effects of melatonin were, however, significantly greater in cold-exposed rats than in rats placed at 22 degrees C. These results suggest that cold exposure should be considered as another state which potentiates the pineal-dependent actions of light deprivation. Cold exposure probably acts by increasing the sensitivity of sites at which pineal melatonin exerts its actions.  相似文献   

7.
The light/dark cycle to which animals, and possibly humans, are exposed has a major impact on their physiology. The mechanisms whereby specific tissues respond to the light/dark cycle involve the pineal hormone melatonin. The pineal gland, an end organ of the visual system in mammals, produces the hormone melatonin only at night, at which time it is released into the blood. The duration of elevated nightly melatonin provides every tissue with information about the time of day and time of year (in animals that are kept under naturally changing photoperiods). Besides its release in a circadian mode, melatonin is also discharged in a pulsatile manner; the physiological significance, if any, of pulsatile melatonin release remains unknown. The exposure of animals including man to light at night rapidly depresses pineal melatonin synthesis and, therefore, blood melatonin levels drop precipitously. The brightness of light at night required to depress melatonin production is highly species specific. In general, the pineal gland of nocturnally active mammals, which possess rod-dominated retinas, is more sensitive to inhibition by light than is the pineal gland of diurnally active animals (with cone-dominated retinas). Because of the ability of the light/dark cycle to determine melatonin production, the photoperiod is capable of influencing the function of a variety of endocrine and non-endocrine organs. Indeed, melatonin is a ubiquitously acting pineal hormone with its effects on the neuroendocrine system having been most thoroughly investigated. Thus, in nonhuman photoperiodic mammals melatonin regulates seasonal reproduction; in humans also, the indole has been implicated in the control of reproductive physiology.Summary of a Plenary Lecture presented by the author in Vienna, August, 1990  相似文献   

8.
The gerbils were exposed to daily I min aggressive encounters for 30 days, to study the effect of social stress on reproduction. The encounters were induced by introduction of an adult male or female gerbil into the cage of a male retired breeder living in isolation. In the male gerbils the encounters decreased (P < 0.001) gonadal weight and sperm counts. The accessory sex organs responded variedly to the encounters. The surface areas of abdominal scent glands decreased (P < 0.001). The results suggest that exposure to aggressive encounters had a negative influence on male reproduction in the gerbil. Contrary to the results in male gerbils, encounters with males had a positive influence on reproduction in females. This was evidenced by data on ovarian and uterine weights, follicular kinetics and the estrous cycle. The ovarian and uterine weights increased (P < 0.001) in gerbils exposed to the encounters. The number of estruses increased (P < 0.001) whereas the diestruses decreased. Study of follicular kinetics revealed an increase in the number of growing follicles and a decrease in the number of regressive follicles. The mechanism(s) by which the encounters influence reproduction is not known. Adrenal gland weights increased (P < 0.001) in both male and female gerbils exposed to the encounters. The pinealocyte cell and nuclear diameters decreased (P < 0.01) in males and increased (P < 0.001) in female gerbils after the encounters. Presumably the adrenal and pineal glands may play an important role mediating the effects of the encounters.  相似文献   

9.
As a component of studies to search for effects of 60-Hz electric field exposure on mammalian endocrine function, concentrations of melatonin, 5-methoxytryptophol, and serotonin-Nacetyl transferase activity were measured in the pineal glands of rats exposed or sham-exposed at 65 kV/m for 30 days. In two replicate experiments there were statistically significant differences between exposed and control rats in that the normal nocturnal increase in pineal melatonin content was depressed in the exposed animals. Concentrations of 5-methoxytryptophol were increased in the pineal glands of the exposed groups when compared to shamexposed controls. An alteration was also observed in serotonin-N-acetyl transferase activity, with lower levels measured in pineal glands from exposed animals.  相似文献   

10.
The purpose of this investigation was to explore whether the pineal organ and its hormone melatonin has any influence on the activity of thyroid glands, if so, how that relates to the reproductive status of a hitherto unstudied seasonally breeding wild bird. Accordingly, an identical experimental regimen was followed with adult male spotted munia (Lonchura punctulata; Passeriformes) during both its gametogenically active (August-September) and inactive (March-April) phases of the annual reproductive cycle. In either case, the levels of circulating thyroid hormones (both T3 and T4) and cellular characteristics of thyroid glands in groups of birds were studied following surgical removal of the pineal gland and/or daily afternoon administration of melatonin (10 μg/ 100 g body weight/ day for 30 days). The results of the same experimental schedule were found to be different depending on the sexual status of the concerned birds. During the breeding phase, pinealectomy (Px) induced significantly decreased values of T3 and increased for T4 along with hypertrophy of the thyroid follicular cells (TFC). The changes were reversed in melatonin treated Px birds. An increased amount of T3 and decreased concentration of serum T4 were also observed in melatonin injected intact birds. Conversely, the responses of TFC and of thyroid hormones in blood to either Px, or Px with melatonin, or to melatonin alone in intact munias during their inactive reproductive phase were just opposite to those noted during the breeding phase. The results of the present study suggest an influence of the pineal upon the thyroid in spotted munia. Moreover, it appears that this influence is carried out by melatonin, the action of which is reversible in relation with the gametogenic status of the concerned avian species.  相似文献   

11.
1. Interferon-gamma (IFN-gamma) has been shown to suppress N-acetyltransferase (NAT) activity in cultured rat pineal glands when stimulated with isoproterenol (ISO). 2. Conversely, IFN-gamma has also been shown to increase the melatonin content of the rat pineal gland in organ culture. 3. Circumstantial evidence leads to a hypothesis that the NAT suppressive effect may be due to the action of IFN-gamma on the sympathetic nerve terminals. 4. To test this hypothesis, pineal glands from intact (INT) and superior cervical ganglionectomized (SCGX) rats, which had been operated 5 days earlier, were cultured with either ISO or ISO + IFN-gamma. 5. The concentration of ISO was 10(-8) M and that of IFN-gamma was 300 antiviral units/ml. 6. The pineals were incubated for a total period of 5.5 hr, after which the activities of NAT and hydroxyindole-O-methyltransferase (HIOMT) and the levels of melatonin and cAMP were estimated. 7. Suppression of NAT by IFN-gamma was observed in the pineals from INT rats, but not in those from SCGX animals. 8. IFN-gamma significantly enhanced melatonin levels over those in ISO-stimulated pineals and culture media from the SCGX animals, but not from the INT animals. 9. IFN-gamma treatment had no effect on either the HIOMT activity or cAMP levels. 10. The results indicate that the IFN-gamma-induced NAT suppression requires the integrity of the sympathetic nerve terminals and the IFN-gamma-induced enhancement of melatonin production is accomplished through its direct action on pinealocytes.  相似文献   

12.
The pineal organ of masu salmon Oncorhynchus masou was maintained in a flow-through, whole-organ culture (superfusion) system and melatonin secretory profiles were determined at 15 °C under light-dark cycles of 12:12 h (LD 12:12) or the same in combination with constant darkness (DD) for 72 h. Under LD 12:12, superfused pineal organs showed a rhythmic melatonin secretion with high and low rates during the dark phase and the light phase, respectively. When the pineal organs maintained under LD 12:12 for 24 h were transferred to DD, melatonin secretion was consistently activated and no endogenous component was evident. When the pineal organs maintained under DD for 48 h were transferred to LD 12:12, melatonin secretion was reduced only during the light phase. These results indicate that melatonin secretion from the superfused pineal organ of masu salmon is regulated not by an intra-pineal circadian oscillator but by the environmental LD cycles, via local photoreceptors.  相似文献   

13.
We investigated the effects of diazepam (DZP) and its three metabolites: nordiazepam (NZP), oxazepam (OZP), and temazepam (TZP) on pineal gland nocturnal melatonin secretion. We looked at the effects of benzodiazepines on pineal gland melatonin secretion both in vitro (using organ perifusion) and in vivo in male Wistar rats sacrificed in the middle of the dark phase. We also examined the effects of these benzodiazepines on in vivo melatonin secretion in the Harderian glands. Neither DZP (10-5-10-6 M) nor its metabolites (10-4-10-5 M) affected melatonin secretion by perifused rat pineal glands in vitro. In contrast, a 10-4 M suprapharmacological concentration of DZP increased melatonin secretion of perifused pineal glands by 70%. In vivo, a single acute subcutaneous administration of DZP (3 mg/kg body weight) significantly affected pineal melatonin synthesis and plasma melatonin levels, while administration of the metabolites under the same conditions did not. DZP reduced pineal melatonin content (-40%), N-acetyltransferase activity (-70%), and plasma melatonin levels (-40%), but had no affects on pineal hydroxyindole-O-methyltransferase activity. Neither DZP nor its metabolites affected Harderian gland melatonin content. Our results indicate that the in vivo inhibitory effect of DZP on melatonin synthesis is not due to the metabolism of DZP. The results also show that the control of melatonin production in the Harderian glands differs from that observed in the pineal gland.  相似文献   

14.
The pineal organ of masu salmon Oncorhynchus masou was maintained in a flow-through, whole-organ culture (superfusion) system and melatonin secretory profiles were determined at 15 °C under light-dark cycles of 12:12 h (LD 12:12) or the same in combination with constant darkness (DD) for 72 h. Under LD 12:12, superfused pineal organs showed a rhythmic melatonin secretion with high and low rates during the dark phase and the light phase, respectively. When the pineal organs maintained under LD 12:12 for 24 h were transferred to DD, melatonin secretion was consistently activated and no endogenous component was evident. When the pineal organs maintained under DD for 48 h were transferred to LD 12:12, melatonin secretion was reduced only during the light phase. These results indicate that melatonin secretion from the superfused pineal organ of masu salmon is regulated not by an intra-pineal circadian oscillator but by the environmental LD cycles, via local photoreceptors.  相似文献   

15.
Summary The MSH producing cells in the pars intermedia of Sarotherodon mossambicus have been shown to be involved in background adaptation processes. Reflected light received by the eyes affects the activity of these cells. In the present study the hypothesis has been tested that also the pineal organ, as a second photoreceptor, is involved in regulation of the metabolic activity of the MSH cells. The pineal organ appears to contain photoreceptor cells and is considered to be capable of transferring information about light conditions to the animal. Removal of the pineal organ of fish kept on a black background has no effect on activity of MSH cells, whereas the activity of these cells in fish kept in darkness is increased. Thus it seems that the pineal organ exercises its influence on MSH cells only in darkness and that this influence results in a reduced activity of these cells. It is therefore concluded that the metabolic activity of MSH cells is inhibited not only by reflected light received by the eyes, but also by the action of the pineal organ as a result of the absence of illumination.No structural signs of secretory activity can be observed in the pineal, which might indicate synthesis or release of substances like melatonin. However, administration of melatonin reduces the activity of MSH cells. Neither pinealectomy nor treatment with melatonin has any influence on the second cell type of the pars intermedia, the PAS positive cells.  相似文献   

16.
17.
Pineal levels of tryptophan, 5-hydroxytryptophan, serotonin, N-acetylserotonin, melatonin, 5-hydroxyindoleacetic acid and the enzyme activities of N-acetyltransferase and hydroxyindole-O-methyltransferase were determined in male albino rats and Syrian hamsters that were injected with insulin twice daily for three days, or injected with streptozotocin to induce diabetes. Neither insulin injections nor streptozotocin diabetes had any effect on pineal melatonin production in rats. In hamsters, diabetes reduced the nocturnal peak of pineal melatonin content by approximately one half, while insulin injections had no effect on pineal melatonin levels; however, insulin injections did cause a slight increase in pineal N-acetyltransferase activity. These findings indicate that the pineal gland of the hamster may be more sensitive to alterations in plasma insulin levels than the same organ in rats.  相似文献   

18.
Bidirectional communication between the pineal gland and the immune system   总被引:1,自引:0,他引:1  
The pineal gland is a vertebrate neuroendocrine organ converting environmental photoperiodic information into a biochemical message (melatonin) that subsequently regulates the activity of numerous target tissues after its release into the bloodstream. A phylogenetically conserved feature is increased melatonin synthesis during darkness, even though there are differences between mammals and birds in the regulation of rhythmic pinealocyte function. Membrane-bound melatonin receptors are found in many peripheral organs, including lymphoid glands and immune cells, from which melatonin receptor genes have been characterized and cloned. The expression of melatonin receptor genes within the immune system shows species and organ specificity. The pineal gland, via the rhythmical synthesis and release of melatonin, influences the development and function of the immune system, although the postreceptor signal transduction system is poorly understood. Circulating messages produced by activated immune cells are reciprocally perceived by the pineal gland and provide feedback for the regulation of pineal function. The pineal gland and the immune system are, therefore, reciprocally linked by bidirectional communication.  相似文献   

19.
Isoproterenol (1 mg/kg) was subcutaneously injected into adult male rats during the day to stimulate pineal N-acetyltransferase (NAT) activity and pineal and serum melatonin levels. Two hours after isoproterenol administration when levels of each of these variables had increased significantly, the experimental animals swam for 10 min in 22 degrees C water. At 15 min after swimming onset, pineal and serum melatonin levels were highly significantly depressed compared to those in control animals that did not swim. The high NAT level was not influenced by swimming. In a second study, isoproterenol injected rats swam for either 1, 3, 6 or 10 min and were sampled 15 min after the onset of swimming. The reduction in the elevated pineal melatonin in these animals was correlated with the length of the swim, i.e., as the duration of swim increased the percent reduction in pineal melatonin also increased. Neither pineal NAT nor hydroxyindole-O-methyltransferase (HIOMT) activities were influenced by swimming. The results suggest that elevated pineal and serum melatonin induced by isoproterenol can be depressed with no effect on the activity of the enzymes which convert serotonin to melatonin.  相似文献   

20.
The circadian rhythm of melatonin production (high melatonin levels at night and low during the day) in the mammalian pineal gland is modified by visible portions of the electromagnetic spectrum, i.e., light, and reportedly by extremely low frequency (ELF) electromagnetic fields as well as by static magnetic field exposure. Both light and non-visible electromagnetic field exposure at night depress the conversion of serotonin (5HT) to melatonin within the pineal gland. Several reports over the last decade showed that the chronic exposure of rats to a 60 Hz electric field, over a range of field strengths, severely attenuated the nighttime rise in pineal melatonin production; however, more recent studies have not confirmed this initial observation. Sinusoidal magnetic field exposure also has been shown to interfere with the nocturnal melatonin forming ability of the pineal gland although the number of studies using these field exposures is small. On the other hand, static magnetic fields have been repeatedly shown to perturb the circadian melatonin rhythm. The field strengths in these studies were almost always in the geomagnetic range (0.2 to 0.7 Gauss or 20 to 70 μtesla) and most often the experimental animals were subjected either to a partial rotation or to a total inversion of the horizontal component of the geomagnetic field. These experiments showed that several parameters in the indole cascade in the pineal gland are modified by these field exposures; thus, pineal cyclic AMP levels, N-acetyltransferase (NAT) activity (the rate limiting enzyme in pineal melatonin production), hydroxyindole-O-methyltransferase (HIOMT) activity (the melatonin forming enzyme), and pineal and blood melatonin concentrations were depressed in various studies. Likewise, increases in pineal levels of 5HT and 5-hydroxyindole acetic acid (5HIAA) were also seen in these glands; these increases are consistent with a depressed melatonin synthesis. The mechanisms whereby non-visible electromagnetic fields influence the melatonin forming ability of the pineal gland remain unknown; however, the retinas in particular have been theorized to serve as magnetoreceptors with the altered melatonin cycle being a consequence of a disturbance in the neural biological clock, i.e., the suprachiasmatic nuclei (SCN) of the hypothalamus, which generates the circadian melatonin rhythm. The disturbances in pineal melatonin production induced by either light exposure or non-visible electromagnetic field exposure at night appear to be the same but whether the underlying mechanisms are similar remains unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号