首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中华绒螯蟹对Pb和Cd的富集与释放特性   总被引:5,自引:0,他引:5  
应用生物富集双箱动力学模型模拟了中华绒螯蟹(Eriocheir sinensis)分别在Pb浓度为0.25、0.50、0.75mg/L,Cd浓度为0.025、0.050、0.075mg/L的单一水环境中暴露时,蟹鳃、肝胰腺、肌肉和血淋巴对Pb和Cd的生物富集与释放实验,并通过非线性拟合得到中华绒螯蟹对Pb和Cd的富集速率常数k1、排出速率常数k2、生物富集系数BCF、生物半衰期B1/2、富集平衡时生物体内Pb和Cd含量CAmax等动力学参数。结果表明:(1)中华绒螯蟹对Pb和Cd具有明显的富集,蟹鳃、肝胰腺和肌肉中Pb和Cd的含量与富集时间和水环境中Pb和Cd暴露浓度表现出了很好的正相关,血淋巴在富集阶段没有明显的规律。理论平衡状态下鳃、肝胰腺和肌肉中Pb和Cd含量CAmax随着暴露浓度的增大而增大,且成正相关。(2)Pb和Cd在中华绒螯蟹组织器官中的富集具有选择性,开始实验前,Pb在中华绒螯蟹体内的的分布规律为:肝胰腺>鳃>肌肉>血淋巴;Cd的分布规律为:鳃>肝胰腺>血淋巴>肌肉。在实验浓度的Pb和Cd水环境中暴露16d后,Pb的分布规律为:鳃>肝胰腺>肌肉>血淋巴;Cd的分布规律为:肝胰腺>鳃>肌肉>血淋巴。(3)中华绒螯蟹对Pb和Cd的生物富集和释放都较缓慢。经过16d的生物富集,各组织器官中Pb和Cd的含量均未达到稳态平衡。Pb和Cd在组织器官中的生物富集系数(BCF)范围分别为5-51和6-3148,中华绒螯蟹对Cd的富集能力明显高于Pb(P1/2)范围分别为4-9d和8-57d,中华绒螯蟹对Cd的排出能力明显低于Pb。    相似文献   

2.
Specimens of sea bass (Dicentrarchus labrax) were exposed to two different cadmium concentrations (0.5 and 5 μg Cd2+/ml seawater) for a period of 7 days. Cadmium accumulated in the tissues of D. labrax in the following order: kidney > liver > gills at both concentrations. Accumulation patterns in fish exposed to 0.5 μg Cd2+/ml seawater were different with respect to 5.0 μg Cd2+/ml seawater. At both Cd concentrations a similar stress situation occurred during the first 4 hr as noted by the depletion of glycogen stores and the increase in free glucose in the muscle; metallothionein was induced in the liver, but failed to bind all the cytosolic Cd, which was in part bound to high-molecular-weight ligands. Fish recovered from this initial stress situation within 24 hr as indicated by the increase in glycogen and the decrease of glucose. Long-term effects were clearly dependent upon metal concentration: at lower Cd exposure, metallothionein induction increased linearly with time and counteracted the toxic effect of the metal; on the other hand, when fish were exposed to 5.0 μg Cd2+/ml seawater a clear stress occurred at the end of the exposure, as indicated by the notable decrease of glycogen stores, the increase of free glucose, the decrease of AEC in the muscle and the increase of Cd bound to high-molecular-weight ligands in the liver.  相似文献   

3.
1. The accumulation of cadmium (Cd) from external environmental solutions was measured in channel catfish (Ictalurus punctatus) with the aid of 109Cd and by direct analysis of tissues. 2. Acute uptake (with 109Cd) was concentration dependent and was increased by changing the external pH from 7.3 to 5.0 and decreased by raising the Ca concentration from 0.1 mM to 3.0 mM. 3. The presence of external Zn did not change the uptake of the Cd. 4. In chronic 7-day experiments, fasted catfish were found to accumulate the toxic metal in their liver and kidneys from external media with Cd concentrations as low as 10(-9) M (about 0.1 microgram/l). 5. Concentrations were greater in the kidneys than the liver. 6. Detectable amounts of Cd (less than 0.03 microgram/g net wt) were not found in muscle in this time at external concentrations of Cd less than 10(-5) M (less than 1.0 mg/l).  相似文献   

4.
Young adult rats absorbed 50 p.p.m. Cd2+ added to drinking water. After 6 weeks, 3, 6 and 9 months of treatment, the ultrastructural condition of liver, kidney and muscle was observed by electron microscopy. The choice of these tissues was determined by their differences in the capacity to accumulate Cd2+: the liver is able to concentrate a considerable amount of metal, but redistributes it throughout the entire organism, while the kidney collects it in view of its elimination. Muscle contains the least Cd2+. A general regression in mitochondria cristae accompanied by a vesiculation and a fragmentation of endoplasmic reticulum appeared simultaneously in the three tissues, at as early as 6 weeks of treatment, and extended progressively with its continuation supporting evidence of a general attack of the intracellular membrane systems. Cd2+ stimulation of membrane-degrading enzymes such as phospholipases and proteases was suggested. A concomitant diminution in glycogen stores was noted. Active synthesis of neutral lipids, especially cholesterol esters, took place in liver mitochondria of treated rats in collaboration with rough endoplasmic reticulum, and progressively generated a multiplication of electron-transparent inclusions in cytoplasm. Isolated mitochondria from liver, kidney and muscle of Cd2+-treated rats maintained partial energy coupling, but displayed a rapid early fall in cytochrome oxidase followed by a partial restoration after 6 months of treatment, and a progressively slackening of succinate dehydrogenase. Isolated vesicles of liver mitochondria inner membrane of treated rats behaved as intact mitochondria, indicating changes inside the membrane itself. Addition in vitro of the metal ion to mitochondria and also to inner membrane vesicles isolated from control rats revealed that Cd2+ was able to stop completely succinate dehydrogenase, but was totally ineffective on cytochrome oxidase. Membrane fixation of Cd2+ on the flavoprotein or SH associated with succinate dehydrogenase is proposed. Considering the close parallelism of the extensive depression of microsomal NADPH cytochrome c reductase and the rapid fall in mitochondrial cytochrome oxidase, it is suggested that an indirect inhibition process occurs, through Cd2+-induced diminution of a constituent common to all cytochromes in the cell.  相似文献   

5.
The effects of cadmium (Cd) uptake on ultrastructure and lipid composition of chloroplasts were investigated in 28-day-old tomato plants (Lycopersicon esculentum var. Ibiza F1) grown for 10 days in the presence of various concentrations of CdCl2. Different growth parameters, lipid and fatty acid composition, lipid peroxidation, and lipoxygenase activity were measured in the leaves in order to assess the involvement of this metal in the generation of oxidative stress. We first observed that the accumulation of Cd increased with external metal concentration, and was considerably higher in roots than in leaves. Cadmium induced a significant inhibition of growth in both plant organs, as well as a reduction in the chlorophyll and carotenoid contents in the leaves. Ultrastructural investigations revealed that cadmium induced disorganization in leaf structure, essentially marked by a lowered mesophyll cell size, reduced intercellular spaces, as well as severe alterations in chloroplast fine structure, which exhibits disturbed shape and dilation of thylakoid membranes. High cadmium concentrations also affect the main lipid classes, leading to strong changes in their composition and fatty acid content. Thus, the exposure of tomato plants to cadmium caused a concentration-related decrease in the fatty acid content and a shift in the composition of fatty acids, resulting in a lower degree of fatty acid unsaturation in chloroplast membranes. The level of lipid peroxides and the activity of lipoxygenase were also significantly enhanced at high Cd concentrations. These biochemical and ultrastructural changes suggest that cadmium, through its effects on membrane structure and composition, induces premature senescence of leaves.  相似文献   

6.
Various tissues of common winkles, Littorina littorea (L.), experimentally exposed to cadmium (Cd) chloride were examined using light and electron microscopy and their elemental composition determined by X-ray microanalysis and histochemistry. Membrane granules in gill epithelial cells with paddle cilia contain carbonates, phosphates and sulphides associated with different cations in different types of granules. Traces of Cd have been found only in those granules containing sulphur and iron. Nephrocytes also contain small amounts of this metal in the cytoplasm of excretory cells. X-ray microanalysis reveals that concretions of basophilic cells are minor sites for Cd sequestration while BTAN-ASSG stain for unbound Cd indicates that most of the Cd is located within the lysosomes of digestive cells in association with proteins. Low amounts of the metal have been evidenced in the granules of epithelial mantle cells rich in sulphur. The results also indicate that hemocytes contain granules of calcium phosphate and iron sulphide. Cd is also associated to sulphur rather than to phosphate. These hemocytes may act as Cd carrier from gills to kidney and digestive gland. A hypothetical pathway for Cd accumulation and detoxification is suggested.  相似文献   

7.
Summary Various tissues of common winkles,Littorina littorea (L.), experimentally exposed to cadmium (Cd) chloride were examined using light and electron microscopy and their elemental composition determined by X-ray microanalysis and histochemistry. Membrane granules in gill epithelial cells with paddle cilia contain carbonates, phosphates and sulphides associated with different cations in different types of granules. Traces of Cd have been found only in those granules containing sulphur and iron. Nephrocytes also contain small amounts of this metal in the cytoplasm of excretory cells. X-ray microanalysis reveals that concretions of basophilic cells are minor sites for Cd sequestration while BTAN-ASSG stain for unbound Cd indicates that most of the Cd is located within the lysosomes of digestive cells in association with proteins. Low amounts of the metal have been evidenced in the granules of epithelial mantle cells rich in sulphur. The results also indicate that hemocytes contain granules of calcium phosphate and iron sulphide. Cd is also associated to sulphur rather than to phosphate. These hemocytes may act as Cd carrier from gills to kidney and digestive gland. A hypothetical pathway for Cd accumulation and detoxification is suggested.  相似文献   

8.
Understanding the effects of metal contamination in the Amazon basin is important because of the potential impact on this region of high biodiversity. In addition, the significance of fish as the primary source of protein for the local human population (living either alongside the Amazon River or in the city of Manaus) highlights the need for information on the metal transfer through the food chain. Bioaccumulation of metals in fish can occur at significant rates through the dietary route, without necessarily resulting in death of the organism. The goal of this work was to expose an economic relevant species from the Amazon basin (tambaqui, Colossoma macropomum) to dietary cadmium (Cd) at concentrations of 0, 50, 100, 200, and 400 microg.g-1 dry food. Fish were sampled on days 15, 30, and 45 of the feeding trials. Tissues were collected for analysis of Cd concentration using graphite furnace atomic absorption spectrophotometry. Cd accumulation in the tissues occurred in the following order: kidney > liver > gills > muscle. Relative to other freshwater fish (e.g., rainbow trout, tilapia), tambaqui accumulated remarkably high levels of Cd in their tissues. Although Cd is known to affect Ca2+ homeostasis, no mortality or growth impairment occurred during feeding trials.  相似文献   

9.
1. Enzyme modulation by cadmium in selected organs of the fish, Barbus conchonius (rosy barb), was investigated in vivo (48 hr exposure to 12.6 mg/l cadmium chloride) and in vitro (10(-6) M cadmium chloride). 2. The acetylcholinesterase (AchE) activity was depressed in the gills but stimulated in the skeletal muscles and brain in vivo. The hepatic, branchial, and renal acid phosphatase (AcP) activity decreased marginally in vivo but it was significantly increased in the gut and ovary. In vitro, except for the liver, the AcP activity was depressed in the selected organs. Collaterally, gut alkaline phosphatase (AlP) was significantly inhibited but a pronounced stimulation was noted in the kidneys and ovary in vivo. In vitro, the AlP activity was conspicuously elevated in the kidneys and gut, and moderately in the gills. 3. Cadmium inhibited the glutamate-oxaloacetate and glutamate-pyruvate transaminases (GOT and GPT) in the liver, gills and kidneys in vivo. In vitro, the GOT and GPT activities were decreased in the liver, gills and kidneys. The lactic dehydrogenase (LDH) was significantly stimulated by Cd in the heart in vivo but in vitro the metal inhibited the enzyme in the gills. 4. Enzymes in the liver, followed by those in the kidneys and gills seem to be most seriously affected by Cd poisoning in this fish.  相似文献   

10.
Metallothionein (MT) concentration in gills, liver, and kidney tissues of Persian sturgeon (Acipenser persicus) were determined following exposure to sublethal levels of waterborne cadmium (Cd) (50, 400, and 1,000 μg l−1) after 1, 2, 4, and 14 days. The increases of MT from background levels were 4.6-, 3-, and 2.8-fold for kidney, liver, and gills, respectively. The results showed that MT level change in the kidney is time and concentration dependent. Also, cortisol measurement revealed elevation at the day 1 of exposure and followed by MT increase in the liver. Cd concentrations in the cytosol of experimental tissues were measured, and the results indicated that Cd levels in the cytosol of liver, kidney, and gills increased 240.71-, 32.05-, and 40.16-fold, respectively, 14 days after exposure to 1,000 μg l−1 Cd. The accumulation of Cd in cytosol of tissues is in the order of liver > gills > kidney. Pearson correlation coefficients showed that the MT content in kidney is correlated with Cd concentration, the value of which is more than in liver and gills. Thus, kidney can be considered as a tissue indicator in A. persicus for waterborne Cd contamination.  相似文献   

11.
The accumulation of cadmium, its affinity for metallothioneins (MTs), and its relation to copper, zinc, and selenium were investigated in the experimental mudpuppy Necturus maculosus and the common toad Bufo bufo captured in nature. Specimens of N. maculosus were exposed to waterborne Cd (85???g/L) for up to 40?days. Exposure resulted in tissue-dependent accumulation of Cd in the order kidney, gills > intestine, liver, brain > pancreas, skin, spleen, and gonads. During the 40-day exposure, concentrations increased close to 1???g/g in kidneys and gills (0.64?C0.95 and 0.52?C0.76; n?=?4), whereas the levels stayed below 0.5 in liver (0.14?C0.29; n?=?4) and other organs. Cd exposure was accompanied by an increase of Zn and Cu in kidneys and Zn in skin, while a decrease of Cu was observed in muscles and skin. Cytosol metallothioneins (MTs) were detected as Cu,Zn?Cthioneins in liver and Zn,Cu?Cthioneins in gills and kidney, with the presence of Se in all cases. After exposure, Cd binding to MTs was clearly observed in cytosol of gills as Zn,Cu,Cd?Cthionein and in pellet extract of kidneys as Zn,Cu,Cd?Cthioneins. The results indicate low Cd storage in liver with almost undetectable Cd in liver MT fractions. In field trapped Bufo bufo (spring and autumn animals), Cd levels were followed in four organs and found to be in the order kidney > liver (0.56?C5.0???g/g >0.03?C0.72???g/g; n?=?11, spring and autumn animals), with no detectable Cd in muscle and skin. At the tissue level, high positive correlations between Cd, Cu, and Se were found in liver (all r?>?0.80; ???=?0.05, n?=?5), and between Cd and Se in kidney (r?=?0.76; n?=?5) of autumn animals, possibly connected with the storage of excess elements in biologically inert forms. In the liver of spring animals, having higher tissue level of Cd than autumn ones, part of the Cd was identified as Cu,Zn,Cd?Cthioneins with traces of Se. As both species are special in having liver Cu levels higher than Zn, the observed highly preferential Cd load in kidney seems reasonable. The relatively low Cd found in liver can be attributed to its excretion through bile and its inability to displace Cu from MTs. The associations of selenium observed with Cd and/or Cu (on the tissue and cell level) point to selenium involvement in the detoxification of excessive cadmium and copper through immobilization.  相似文献   

12.
Trace metal (Zn, Pb, Cu, Cr and Cd) concentrations in the water column and in the liver, muscle and gill tissues of Parachanna obscura and Clarias gariepinus in Agulu Lake, Nigeria, were investigated in June 2014 and compared with WHO and FAO safe limits for water and fish. Hazard index (HI) values were estimated to assess the potential public health risk of consuming contaminated fish. Lead and cadmium exceeded WHO guideline values for drinking water. In most cases, variations in concentration of the metals in organs were liver > muscle > gill. Differences in tissue-specific concentrations between species were not significant, except for zinc in muscles and gills. Cadmium and chromium were not detected in the fish, but lead was above the FAO maximum value for consumption. Hazard index values were below 1, indicating a low risk to public health. However, trace metal contamination in Agulu Lake is increasing.  相似文献   

13.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

14.
The accumulation of Cd and Pb in the gills of the lamellibranch mollusc Mytilus edulis has been studied by electron microscopy, X-ray microanalysis, atomic absorption spectroscopy and radionuclide monitoring. The patterns of accumulation of the two elements differ markedly as do the sites of deposition whithin the gills. Lead is found extracellularly as crystalline deposits in the basal lamina which forms the capillary walls of the gill lamellae. The Pb is found associated with Ca in equiatomic ratios and occurs either as a mixed or complex carbonate. Cadmium is always associated with S and frequently with P in membrane bound vesicles within the cells of the gill epithelium and in the amoebocytes. The S is probably attributable to the presence of cysteine residues in a metal binding protein which can be extracted from the gills. Analysis of the metal binding protein shows that it binds Ag, Cd, Cu, Fe, Hg, Sn and Zn. Its amino acid composition is similar to that reported for eels and limpets but has a lower cysteine content than mammalian metal binding protein.  相似文献   

15.
Rats were intratracheally (i.t.) exposed to 36.5 or 27.5 microg of cadmium (Cd) as soluble cadmium chloride (CdCl2) and insoluble cadmium oxide (CdO) salts. The retention of metal in lungs, liver and kidney was assessed by atomic adsorption spectrophotometer. The animals were intraperitoneally (i.p.) primed with sheep red blood cells (SRBC) and assessed for the number of antibody forming cells in lung associated lymph nodes (LALN) and spleen. Both the compounds had similar retention of metal in lungs but CdO induced more pulmonary inflammatory and degradative changes than CdCl2. The larger influx of polymorphonuclear cells (PMNs) following CdO exposure appears to be due to the absence of protection afforded by Cd induced metallothionein cytoplasmic protein while the Cd metallothionein complex formed in the case of CdCl2 is more protective. However both forms of Cd had similar local immunosuppressive potential but CdO had more prolonged suppressive effect.  相似文献   

16.
1. Enzyme modulation by cadmium in selected organs of the fish, Barbus conchonius (rosy barb), was investigated in vivo (48 hr exposure to 12.6 mg/1 cadmium chloride) and in vitro (10−6M cadmium chloride).2. The acetylcholinesterase (AchE) activity was depressed in the gills but stimulated in the skeletal muscles and brain in vivo. The hepatic, branchial, and renal acid phosphatase (AcP) activity decreased marginally in vivo but it was significantly increased in the gut and ovary. In vitro, except for the liver, the AcP activity was depressed in the selected organs. Collaterally, gut alkaline phosphatase (A1P) was significantly inhibited but a pronounced stimulation was noted in the kidneys and ovary in vivo. In vitro, the AIP activity was conspicuously elevated in the kidneys and gut, and moderately in the gills.3. Cadmium inhibited the glutamate-oxaloacetate and glutamate-pyruvate transaminases (GOT and OPT) in the liver, gills and kidneys in vivo. In vitro, the GOT and GPT activities were decreased in the liver, gills and kidneys. The lactic dehydrogenase (LDH) was significantly stimulated by Cd in the heart in vivo but in vitro the metal inhibited the enzyme in the gills.4. Enzymes in the liver, followed by those in the kidneys and gills seem to be most seriously affected by Cd poisoning in this fish.  相似文献   

17.
Using the perfusion method, we compared cadmium accumulation and influx across the gills of the euryhaline Chinese mitten crab Eriocheir sinensis, exposed to 4.8 microM cadmium in the incubation medium (OUT). Cadmium influx was not observed across posterior gills while it ranged from 0.15 to 6.82 nmol Cd g(-1) gill w.w. h(-1) across anterior ones. For these respiratory gills, a strong increase (40 times) was observed when calcium was removed in both incubation and perfusion media while the lack of sodium in the perfusion medium resulted in a 46 times decrease. For crabs acclimated 15 days to artificial seawater, cadmium influx across anterior gills showed a 21 times decrease when compared with freshwater acclimated ones. On the other hand, after 3 h of perfusion, we detected cadmium accumulation in both types of gills, ranging from 3.8 to 68 nmol Cd g(-1) gill w.w. in anterior gills and from 2.1 to 39 nmol Cd g(-1) gill w.w. in posterior ones. Such accumulations represent between 61.3 and 100% of the total uptake of cadmium through the gills. From these results, we suggest that cadmium can penetrate more easily into the hemolymph space through the 'respiratory' type epithelium present in the anterior gills but absent in the posterior ones. This metal uptake is likely to occur at least in part through the same pathways as calcium. On the contrary, cadmium seems to be sequestered inside the posterior gills, perhaps in the cuticle of the salt-transporting type epithelium.  相似文献   

18.
1. The accumulation of cadmium in the liver, kidney and gills of rainbow trout and stone loach was measured during exposure of the fish to the metal at 3 smg/l in their aquarium water. The pattern of accumulation of the toxic metal in the individual organs was different between the two species.2. The tissue concentrations of metallothionein-specific mRNA and metallothionein protein were also determined in these organs from the same fish. In rainbow trout, the induction of metallothionein gene expression resulted in a gradual increase in metallothionein concentration in gill over the course of the experiment whereas increases in metallothionein in the liver and kidney were detected only at the later time points of analysis (beyond 19 weeks). By contrast, in the same tissues from stone loach, relatively minor changes were quantified in specific mRNA and metallothionein concentrations.3. Throughout the experimental period, tissue concentrations of zinc and copper were determined in the liver, kidney and gills of the rainbow trout and stone loach. Subtle decreases were observed in the zinc concentration of gills in rainbow trout and substantial increases were observed in the hepatic copper concentrations in both species at the later time points of analysis.4. The ability of cadmium to induce metallothionein gene expression and its subsequent ability to compete for the sequestration sites on the newly-synthesized protein is discussed with regard to the relative levels of cadmium, zinc and copper in the organs studied and differing regimes of cadmium administration.  相似文献   

19.
113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases   总被引:1,自引:0,他引:1  
113Cd NMR spectra of 113Cd(II)-substituted Escherichia coli alkaline phosphatase have been recorded over a range of pH values, levels of metal site occupancy, and states of phosphorylation. Under all conditions resonances attributable to cadmium specifically bound at one or more of the three pairs of metal-binding sites (A, B, and C sites) are detected. By following changes in both the 113Cd and 31P NMR spectra of 113Cd(II)2 alkaline phosphatase during and after phosphorylation, it has been possible to assign the cadmium resonance that occurs between 140 and 170 ppm to Cd(II) bound to the A or catalytic site of the enzyme and the resonance occurring between 51 and 76 ppm to Cd(II) bound to B site, which from x-ray data is located 3.9 A from the A site. The kinetics of phosphorylation show that cadmium migration from the A site of one subunit to the B site of the second subunit follows and is a consequence of phosphate binding, thus precluding the migration as a sufficient explanation for half-of-the-sites reactivity. Rather, there is evidence for subunit-subunit interaction rendering the phosphate binding sites inequivalent. Although one metal ion, at A site, is sufficient for phosphate binding and phosphorylation, the presence of a second metal ion at B site greatly enhances the rate of phosphorylation. In the absence of phosphate, occupation of the lower affinity B and C sites produces exchange broadening of the cadmium resonances. Phosphorylation abolishes this exchange modulation. Magnesium at high concentration broadens the resonances to the point of undetectability. The chemical shift of 113Cd(II) in both A and B sites (but not C site) is different depending on the state of the bound phosphate (whether covalently or noncovalently bound) and gives separate resonances for each form. Care must be taken in attributing the initial distribution of cadmium or phosphate in the reconstituted enzyme to that of the equilibrium species in samples reconstituted from apoenzyme. Both 113Cd NMR and 31P NMR show that some conformational changes consequent to metal ion or phosphate binding require several days before the final equilibrium species is formed.  相似文献   

20.
The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200–600 μg·l−1), Pb (350–700 μg·l−1) and Cu (10–20 μg·l−1) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l−1, 7 days) and copper (20 μg·l−1, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 μg·l−1. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号