首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was shown previously that light-dependent germination of turions of Spirodela polyrhiza (Lemnaceae) is mediated by the photoreceptor phytochrome [Appenroth & Augsten (1990) Photochemistry and Photobiology 52, 61–65]. In the present study, we found that this photoresponse depends on nitrate in the surrounding medium both during after-ripening (under natural conditions occurring in winter) and during germination after light-induction (in spring). The action of nitrate in the germination response is neither related to the induction of nitrate reductase nor to the rate of uptake of 15NO3?. Moreover, two-factor analysis (phytochrome, nitrate) revealed a multiplicative coaction, i.e. independent action of both factors in mediation of germination. The notion that nitrate is a nutritional prerequisite in phytochrome-mediated germination of turions, is supported by the following facts: (1) Nitrate-requirement during germination was strongly increased by nitrate starvation during after-ripening prior to germination. (2) Ammonium could substitute for nitrate. (3) Nitrate uptake by the turions was unaffected by phytochrome and very pronounced even at low concentrations (0.07 mol m?3) in the medium. With regard to the phytochrome-induced chain of events, it is concluded that nitrate is a prerequisite during a specific developmental phase. Nitrate is not a regulatory element within the chain. In an ecological sense, however, nitrate contents of the aquatic system regulate the germination of turions.  相似文献   

2.
3.
NADH:nitrate reductase (EC 1.6.6.1) activity in the crude extract from Spirodela polyrhiza was relatively labile in vitro. Inclusion of polyvinylpolypyrrolidone into the extraction medium had only a slight effect on the stability of the enzyme, whereas addition of 3 % casein, azocasein, or other proteins to the extraction medium greatly increased the nitrate reductase (NR) activity. Various protease inhibitors were tested for their ability to prevent the loss of NR activity in vitro. Iodoacetate and para-chloromercuric benzoate, the thiol-protease inhibitors, as well as pepstatin, the aspartic-protease inhibitor had no effect on stability of the nitrate reductase. EDTA had a slight stimulatory effect, whereas 5 mM o-phenantroline, another inhibitor of the metallo-proteases increased the activity of nitrate reductase. The highest enzyme activity was found in the presence of phenylmethylsulphonyl fluoride and di-isopropyl phosphorofluoridate both being serine-protease inhibitors. The protease-like inactivator was separated from Spirodela polyrhiza by ammonium sulfate fractionation and acid treatment (pH 4.0). After centrifugation the protein of inactivator in supernatant adjusted to pH 7.5 was removed. When this fraction was examined by electrophoresis in polyacrylamide which copolymerized with edestin, the protein of the nitrate reductase inactivator remained at the cathode. Fractions containing a protein of inactivator degraded casein to products soluble in trichloroacetic acid. Inhibition of the inactivator proteolytic activity by phenylmethylsulphonyl fluoride and di-isopropyl phosphorofluoridate but not by other reagents (thiol- and metallo-protease inhibitors) suggested the involvement of a serine residue at its active site. The inactivator fraction from Spirodela polyrhiza resulted in a loss of the nitrate reductase activity in crude extracts from both cucumber and corn seedlings. A biochemical nature a protein of the nitrate reductase inactivator from S. polyrhiza is discussed.  相似文献   

4.
5.
The aquatic duckweed Spirodela polyrhiza propagates itself vegetatively by forming turions – bud‐like perennation organs – in the autumn, which spend the winter on the bottom of ponds and then germinate in the following spring and proliferate on the water surface. Newly formed turions usually require a period of cold after‐ripening and light to germinate effectively, but an ample supply of exogenous sugar can lead to germination even in the dark and independent of after‐ripening. The results of the present study indicate that the availability of readily metabolised carbohydrates is a determining factor for turion germination. Freshly harvested turions do not contain soluble, low‐molecular weight carbohydrates at a level sufficient to allow germination to take place, but after‐ripened turions do. Augmentation of the soluble carbohydrate content during after‐ripening derives from gradual breakdown of reserve starch of the turions. The long time required for any germination to be observed in turions incubated in darkness and the limited frequency of germination in the dark (about 50% of turion population), even with an ample external sugar, supply emphasise that both after‐ripening and light are essential for ensuring rapid germination and subsequent frond proliferation at an ecologically appropriate time. The carbohydrate supply required for rapid proliferation of the fronds produced at germination is provided by the rapid light‐induced breakdown of turion reserve starch.  相似文献   

6.
The influence of daily photoperiod (8, 16, 24 h) on eight clones of Spirodela polyrhiza was tested in two different nutrient media. The number of vegetative fronds and resting turions formed after 50 days of cultivation were scored. The specific turion yield (STY; number of turions formed per vegetative frond) was used to evaluate the effectiveness of turion formation of the tested clones. All clones formed turions in both nutrient media. The STY varied substantially between the different clones, ranging from 0.22 +/- 0.03 (clone SC from Cuba) to 3.9 +/- 0.3 (clone 9256 from Finland) in continuous light. The STY increased with increasing duration of the photoperiod. This increase may have been due to the extended period of photosynthesis rather than that of a photoperiodic long-day response. Shorter photoperiods did not stimulate turion formation in any of the clones. S. polyrhiza is a day-neutral plant with respect to turion formation, as noted previously (Appenroth et al. 1990. Annals of Botany 66: 163-168). In accordance with this conclusion, no correlation was detected between the STY and the latitude at which the clones occur naturally. Environmental factors other than shortening of photoperiods seem to be effective in signalling seasonal changes of growth conditions in advance to S. polyrhiza.  相似文献   

7.
Control by light and nitrogen (nitrate and ammonium) of theappearance of glutamine synthetase (GS; EC 6.3.1.2 [EC] ) in turionsof Spirodela polyrhiza (L.) Schleiden, strain SJ, was investigatedduring the pregermination period, i.e. up to 48 h after onsetof light. Immediately after transfer from after-ripening conditions(5C, darkness, D) to germination conditions (25C), GS activitydid not respond to light or nitrate. After 72 h in D (25C)activity increased in continuous light. Therefore, the regulatoryrole of light, nitrate and ammonium in the process of appearanceof GS was mainly studied between 72 and 120 h after transferfrom after-ripening to germination conditions (phase II of thepre-germination process). The inducing effect of red light ismediated by the photoreceptor phytochrome: the effect of long-termcontinuous red light (6 or 24 h) can be reversed, at least inpart, by a subsequent far-red light pulse (‘end of day’Irradiation). Blue light is more effective than red light ininducing the appearance of GS. Therefore, a specific blue lighteffect has to be assumed. This represents a novel mode of lightaction in regulating the level of the ammonium assimilatingenzyme in an angiosperm system. lmmunoblots showed that (i)increase in the enzymatic activity is caused by de novo synthesisof the enzyme protein, (ii) two different subunits (38 and 42kDa) contribute to the total activity which must be attributedto two different isofornis. In accordance with results fromother higher plants, the 38 kDa subunit (presumably relatedto the cytosolic isoform) did not increase in the presence oflight, whereas the 42 kDa subunit (presumably related to theplastidic isoform) was induced. The maximal enzyme level wasreached only in the presence of both light (blue light) andnitrate. Light induction was also observed in the presence ofammonium; however, GS activity was decreased, when comparedto nitrate-treated turions. Comparison of these results withprevious observations suggest that the influence of light andnitrate on the germination response and regulation of the nitrate/ammoniumassimilation pathway in turions appear to be unrelated phenomena. Key words: blue light, germination, glutamine synthetase, phytochrome, Spirodela polyrhiza, turion  相似文献   

8.
Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10-4 M. At concentrations 10-1 M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. Coupling of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting escape kinetics were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of photochrome.Abbreviations EGTA ethyleneglycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FR far-red light - Pr red-light-absorbing form of phytochrome - Pfr far red-light-absorbing form of phytochrome - Pipes piperazine-1,4-bis(2-ethanesulfonic acid) - R red light A preliminary report of this work was presented at the XIV Int. Bot. Congr., Berlin (West), Germany, Book of Abstracts, 2-116a-5 (1987)  相似文献   

9.
Wolfgang Haupt 《Planta》1985,164(1):63-68
Spores of the ferns, Dryopteris filix-mas, D. paleacea and Polystichum minutum, sown on plain agar in quartz-distilled water, required several hours of red light in order to germinate. When, however, water agar was replaced by agar made up with a mineral nutrition medium, a single pulse of red light (about 1 min) was able fully to induce germination. Under these conditions spores became light-sensitive a few minutes after sowing. Thus, zero germination in dark controls was obtained only when all light was excluded immediately after sowing or when saturating far-red was given thereafter. The effect of the mineral medium was also obtained using low ion concentrations with an osmolality of less than 100 mol l–1. Thus, a specific ion effect appears more probable than an unspecific osmotic effect. Species differences in light sensitivity and in dark-germination levels, as reported in the literature, might partly be the consequence of different culture media and of light acting at a very early stage after sowing, which hitherto was assumed to be still insensitive to light. On water agar as well as on mineral agar, the inducing effect of a single red pulse could be increased by the appropriate pretreatment, i.e. by preirradiation with red light for several hours, followed by a saturating pulse of far-red, the latter abolishing the direct inducing effect of the red preirradiation. The nature of both the ion-phytochrome interaction and the phytochrome-phytochrome interaction has not yet been analysed.Abbreviations FR saturating far-red light - Pfr far-red absorbin form of phytochrome - R broad-band red light, acting continuously during several hours This work was performed at the Department of Plant Physiology, University of Lund, Sweden, during a sabbatical leave  相似文献   

10.
Borstlap, A. G, Meenks, J. L. D., van Eck, W. F. and Bicker,J. T. E. 1986. Kinetics and specificity of amino acid uptakeby the duckweed Spirodela polyrhiza (L.) Schleiden.—J.exp. Bot. 37: 1020–1035. Uptake of 14C-labelled amino acids by intact, axenically grownplants of Spirodela polyrhiza (L.) Schleiden was investigated.Experiments in which uptake was measured from the decrease inthe amino acid concentration in the medium, indicated that saturableuptake conforms to the sum of two Michaelis-Menten terms, possiblycorresponding with a high-affinity and a low-affinity system.Further experiments with L-leucine, L-glutamic acid, and L-lysine,in which uptake was measured by assaying the amount of 14 inthe plants, showed the presence of a non-saturable componentin addition to the dual saturable uptake. Uptake of L-glutamic acid precipitously declined between pH4?0 and 6? and that of L-leucine between pH 4?0 and 8? whereasL-lysine uptake was optimal at pH 6?0. No evidence was foundthat the apparent high-affinity and low-affinity systems respondeddifferently to changes in external pH or to the addition ofCCCP. The non-saturable uptake component was not affected bychanges in external pH or by adding CCCP, and might have beendue to free space uptake. Mutual inhibition of uptake was found between acidic and neutralamino acids (L-leucine, L-methionine, L-glutamic acid) and betweenbasic amino acids (L-lysine, L-ornithine). The basic amino acidshad no effect on the uptake of L-leucine, L-methionine and L-glutamicacid, although the uptake of basic amino acids was inhibitedby glutaminc acid and several neutral amino acids. It is suggested that the duckweed has a high-affinity transportsystem for neutral and acidic amino acids, and a distinct high-affinitysystem for basic amino acids. It is argued that the first systemtransports zwitterionic amino acids (z-system), and that thesecond system transports cationic amino acids(y+-system). Thespecificity of the low-affinity system is less certain, butthere is some evidence that it is similar to that of their high-affinitycounterparts. Key words: Kinetics, membrane transport, pH-dependency, transport systems, uptake isotherms  相似文献   

11.
Phytochrome is confirmed to be the photoreceptor pigment in the germination response of Onoclea sensibilis L. by demonstrating red-far-red (R-FR) photoreversibility. External Ca2+ is required for this response with a threshold at a submicromolar concentration. Ethylene glycol-bis(-amino-ethyl ether)-N,N,N,N-tetraacetic acid, La3+ and Co2+ reversibly inhibit germination. Lanthanum only inhibits germination when applied before or during irradiation, indicating that the external Ca2+ requirement is transient, although in the absence of Ca2+ the R-stimulated system remains maximally poised to accept the ion for over 4 h after irradiation. The ability to respond to Ca2+ 4.1 h after R-irradiation is not reversed by FR-irradiation, indicating that Ca2+ transport has been uncoupled from phytochrome. Barium and Sr2+, but not Mg2+ can substitute for Ca2+. Artificially increasing the concentration of intracellular free Ca2+ with the ionophore A 23187 stimulates germination in the dark. The Ca2+-calmodulin antagonists, trifluoperizine and chlorpromazine, reversibly inhibit germination. Calcium is required in phytochrome-mediated fern spore germination; it may be acting as a second messenger.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FR far-red light - R fed light  相似文献   

12.
Red-light-induced (via phytochrome) germination decreased with increasing numbers of turions per germination flask (overcrowding). Three hypotheses concerning the mechanism of this germination inhibition were tested, related to abscisic acid, ethylene, and oxygen deficiency: (i) Although abscisic acid is a powerful inhibitor of turion germination it had to be excluded as a cause, because abscisic acid was not secreted from turions into the nutrient solution, (ii) Ethylene (ethrel) strongly inhibited growth of newly formed sprouts, but germination response itself was not inhibited, (iii) Germination inhibition did not appear if short light pulses were substituted by continuous irradiation. It reappeared in the presence of the photosynthesis inhibitor 3-(3, 4-dichlorophenyl)-l, 1-dimethylurea, but it was not observed in aerated nutrient solutions, or when Petri dishes instead of Erlenmeyer flasks were used. Decreased oxygen concentrations in the nutrient solution were produced by turion respiration. Consequently, anaerobiosis within the nutrient solution caused by turion respiration was the reason for germination inhibition by overcrowding.  相似文献   

13.
Light induces both the germination of turions of the duckweed Spirodela polyrhiza and the degradation of the reserve starch stored in the turions. The germination photoresponse requires nitrate, and we show here that nitrate is also needed for the light-induced degradation of the turion starch. Ammonium cannot substitute for nitrate in this regard, and nitrate thus acts specifically as signal to promote starch degradation in the turions. Irradiation with continuous red light leads to starch degradation via auto-phosphorylation of starch-associated glucan, water dikinase (GWD), phosphorylation of the turion starch and enhanced binding of alpha-amylase to starch granules. The present study shows that all of these processes require the presence of nitrate, and that nitrate exerts its effect on starch degradation at a point between the absorption of light by phytochrome and the auto-phosphorylation of the GWD. Nitrate acts to coordinate carbon and nitrogen metabolism in germinating turions: starch will only be broken down when sufficient nitrogen is present to ensure appropriate utilization of the released carbohydrate. These data constitute the first report of control over the initiation of reserve starch degradation by nitrate.  相似文献   

14.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

15.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

16.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

17.
Flavonol-deficient petunia pollen [conditionally male fertile (CMF) pollen] is unable to germinate but application of nanomolar concentrations of flavonol aglycones completely restores function (Mo et al. 1992). In this study a chemically synthesized radioactive flavonol, [4′-O-14C]kaempferide, was used as a model compound to study the metabolism of flavonols during the first few hours of pollen germination. [4′-O-14C] Kaempferide was as efficient at inducing CMF pollen germination as kaempferol and quercetin, the aglycone form of the endogenous flavonols in petunia pollen. Analysis by high-performance liquid chromatography (HPLC) of extracts from both in-vitro-germinated pollen and the germination medium showed that more than 95% of the applied radioactivity was recovered as three kaempferide 3-O-glycosides and unmetabolized kaempferide; no flavonol catabolites were detected. Only HPLC fractions that contained the aglycone, or produced it upon acid hydrolysis, could induce CMF pollen germination in vitro. Structurally diverse flavonols could be classified according to how efficiently the aglycone was internalized and glycosylated during pollen germination. The ability of an individual flavonol to restore germination correlated with the total uptake of flavonols but not with the amount of glycoside formed in the pollen. Thus this study reinforces the conclusion that flavonol aglycones are the active compound for inducing pollen germination. Received: 4 November 1996/Accepted: 4 December 1996  相似文献   

18.
Duckweed is recognized as a phytoremediation aquatic plant due to the production of large biomass and a high level of tolerance in stressed conditions. A laboratory experiment was conducted to investigate antioxidant response and mechanism of copper and mercury tolerance of S. polyrhiza (L.) Schleid. To understand the changes in chlorophyll content, MDA, proline, and activities of ROS-scavenging enzymes (SOD, CAT, GPOD) during the accumulation of Cu+2 and Hg+2, S. polyrhiza were exposed to various concentrations of Cu+2 (0.0–40 μM) and Hg+2 (0.0–0.4 μM). antioxidant activity initially indicated enhancing trend with application of 10 μM Cu+2; 0.2 μM Hg+2 (SOD), of 20 μM Cu+2; 0.2 μM Hg+2 (CAT) and of 10 μM Cu+2;0.2 μM Hg+2 (GPOD) and then decreased consistently up to 40 μM Cu+2 and 0.4 μM Hg+2. In the experiment chlorophyll and frond multiplication initially showed increasing tendency and decreased gradually with the application of increased metal concentration. Application of heavy metal has constantly enhanced proline and MDA content while the maximum increase was observed with the application of 40 μM Cu; 0.4 μM Hg for proline and MDA respectively. The upregulation of antioxidant enzymes and proline reveals that S. polyrhiza has strong biochemical strategies to deal with the heavy metal toxicity induced by the accumulation of Cu+2 and Hg+2.  相似文献   

19.
20.
Effects of high temperature on the germination of maize (Zea mays L.)   总被引:1,自引:0,他引:1  
Graham J. P. Riley 《Planta》1981,151(1):68-74
Poor emergence of maize seedlings, due to high soil temperatures, is a major limitation of crop potential in the lowland tropics. Ability to germinate at high temperature (>c. 37° C) is related to the temperature sensitivity of the embryo, and there is considerable genotypic variation for this character.Respiration and mitochondrial phosphorylation proceed normally in seeds imbibing at 41° C, and ATP levels are adequate for germination. However, the specific activities of several important enzymes are lower, and the rate of protein synthesis is severely reduced compared with seeds imbibing at 28° C. The depression of the rate of protein synthesis in the embryos of several tropical hybrids imbibing at high temperature correlated with their known temperature sensitivity. It is concluded that protein synthesis is an especially temperature sensitive process in germinating maize embryos, and that this is the principal reason for the sensitivity of germinating maize seeds to high temperature.Abbreviations ADP adenosine-5-diphosphate - ATP adenosine-5-triphosphate - BSA bovine serum albumin - EDTA ethylenediaminetetra-acetic acid - HEPES N-2-hydroxyethylpiperazinc-N-2-ethanesulphonic acid - NADH nicotinamide-adenine dinucleotide, reduced form - PPO 2, 5-diphenyloxazole - PVP polyvinylpyrrolidone - SEM standard error of the mean - tris tris (hydroxymethyl)-methylamine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号