首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid 6.4 kbp DNA, 14 kbp DNA, lambda phage particles, all of which contained herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) gene, or IgM molecules, were mixed with erythrocyte membranes and treated with neutral detergent. The transparent mixture was diluted with phosphate-buffered saline (PBS), followed by centrifugation to collect membrane vesicles containing the large macromolecules. 10-15% of 6.4 kbp, 3% of 14 kbp, 4-7% of the lambda phage particles and 14.5% of IgM were trapped within erythrocyte membrane vesicles. The membrane vesicles containing these molecules were fused with L cells, or rat F2408#20 cells, both of which are deficient in thymidine kinase activity. In each case, transformants were obtained. 2 X 10(5) - 7 X 10(5) phage PFU or 1.5 X 10(6) - 8 X 10(7) DNA molecules were required to obtain one transformant from L cells, but 2-3 X 10(7) phage PFU or 2 X 10(9) - 1 X 10(10) DNA molecules were required for one transformant from rat cells. Number of colonies which transiently expressed TK genes in L cells was also determined by autoradiography. The ratio of stable transformants to colonies positive for transient expression in cells treated with low doses of DNA or lambda phage was 46-68%. The transformation efficiency of human fibroblast cells by pSV2-gpt DNA trapped in erythrocyte membrane vesicles was less than that of L cells by HSV-TK DNA, but almost the same as that of rat cells by HSV-TK DNA.  相似文献   

2.
The process of phage T4 DNA injection into the host cell was studied under a fluorescent microscope, using 4',6-diamidino-2-phenylindole as a DNA-specific fluorochrome. The phage DNA injection was observed when spheroplasts were infected with the artificially contracted phage particles having a protruding core. The DNA injection was mediated by the interaction of the core tip with the cytoplasmic membrane of the spheroplast. A membrane potential was not required for the process of DNA injection. On the other hand, DNA injection upon infection by intact noncontracted phage of the intact host cell was inhibited by an energy poison. Based on these observations, together with results from previous work, a model for the T4 infection process is presented, and the role of the membrane potential in the infection process is discussed.  相似文献   

3.
Summary The UV-sensitivity of phage and its infectious DNA have been compared in experiments involving infection of normal cells by phage and transfection of lysozyme-EDTA spheroplasts or Ca++-treated cells by phage DNA. It is shown that UV-irradiated DNA undergoes extensive HCR. Since intact phage and free phage DNA have the same survival after UV-irradiation in Hcr- spheroplasts and cells, resp., and since survival is also identical in Ca++-treated Hcr+ cells it is concluded that DNA in solution or packaged in the phage head provides the same target for the induction of lethal UV lesions. This conclusion is supported by the observation that cysteamine provides a similar radioprotection to the intact phage and its free DNA. Spheroplasts of Hcr+ cells, however, have an HCR capacity reduced by about 20% when compared with normal or Ca++-treated cells. Moreover, UV-reactivation of irradiated DNA, which is absent in spheroplasts, occurs efficiently in Ca++-treated cells. Possible reasons for the physiological difference between spheroplasts and normal cells are discussed. c-mutations, which are readily induced by UV in phage assayed with E. coli mul -, could not be induced in DNA when assayed with spheroplasts or Ca++-treated cells of this strain. No mutants were also found with DNA extracted from UV-irradiated phage. The significance of the mode of entry of UV-irradiated DNA into a cell for the production of mutations is discussed.  相似文献   

4.
Transfection of Escherichia coli spheroplasts by native T5 phage DNA was not affected by treatment with polynucleotide ligase. Denatured T5 phage DNA infectivity, only 0.1% of the native DNA level, was increased slightly by polynucleotide ligase treatment. Renatured T5 phage DNA infectivity was also increased slightly by polynucleotide ligase treatment. To form an infective center with rec(+) spheroplasts, 1.6 to 2.1 native T5 phage DNA molecules were required; however, 1.4 T5 phage DNA molecules were required to form an infective center with recA(-)B(-) spheroplasts, and one molecule was sometimes sufficient for rec B(-) spheroplasts. Polynucleotide ligase treatment of T5 phage DNA had no effect on these parameters. Thus, the single-strand interruptions of T5 phage DNA are probably not essential to the survival of the parental T5 phage DNA, and T5 phage DNA, especially the denatured form, is highly sensitive to some nucleases in E. coli spheroplasts.  相似文献   

5.
Membrane vesicles were prepared by osmotic lysis of spheroplasts from M13-infected Escherichia coli. Reduced nicotinamide adenine dinucleotide (NADH) oxidase (reduced NAD: oxidoreductase, EC 1.6.99.3) and Mg2+-Ca2+-activated adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3), which are normally localized to the inner surface of the cytoplasmic membrane, were 50% acceesible to their polar substrates in these vesicles. The major coat protein of coliphage M13 is also bound to the cytoplasmic membrane (prior to phage assembly) but with its antigenic sites exposed to the exterior of the cell. Antibody to M13 coat protein was used to fractionate membrane vesicles. Neither agglutinated nor unagglutinated vesicles had altered NADH oxidase and adenosine triphosphatase specific activities. This is inconsistent with such vesicles being a mixture of correctly oriented and completely inverted membrane sacs and suggests that NADH oxidase, adenosine triphosphatase, M13 coat protein, or all three proteins rearrange during vesicle preparation.  相似文献   

6.
The stimulating action of sturin and its fractions in the transfection of E. coli spheroplasts with DNA of phage lambda has been shown, and the optimum conditions for the infection of sturin-treated spheroplasts with phage DNa have been established. The biological effect was most pronounced in arginine-enriched low-molecular sturin fraction B. The treatment of spheroplasts with the internal protein of phage T2 did not stimulate transfection. These findings suggest that the specificity of the stimulating action of protamine depends on the peculiarities of its amino acid composition, viz. a high content of arginine which is present in protein molecules in the form of blocks made up of 2-6 amino acid residues.  相似文献   

7.
Penicillin-Binding Component of Bacillus cereus   总被引:3,自引:0,他引:3  
(14)C-penicillin is irreversibly bound by Bacillus cereus 569. Incubation of penicillin-treated cells in a cell wall digestion medium results in solubilization of approximately 60% of the irreversibly bound lable. The extent of the solubilization is the same when cells are prepared by either a cold or 37 C treatment procedure. However, spheroplasts prepared by the cold treatment are leaky. When the resulting spheroplasts are incubated in supplemented medium, reduced rates and levels of penicillinase synthesis, relative to induced whole-cell controls, are observed. Spheroplasts from both cold and 37 C prepared cells exhibit this phenomena, although the spheroplasts from 37 C prepared cells synthesized approximately sixfold higher levels of penicillinase. The size distribution of the label solubilized during the preparation of spheroplasts was examined by using Bio Gel P-150 columns. Although no label appeared in the exclusion volume fractions when the cell wall digest of the 37 C treated cells was chromatographed, approximately 10% of the label from cold-treated cells did appear. These results suggest that the presence of irreversibly bound penicillin is required for the synthesis of induced levels of penicillinase and that the irreversibly bound penicillin can be solubilized as a labile complex with material which is excluded from BioGel P-150. It may be concluded that the penicillin-binding lipoprotein complex which has been previously observed is the penicillin-specific binding site. However, the location of this complex in relation to the cell membrane could not be determined.  相似文献   

8.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

9.
Interaction of DNA with eukaryotic cells under conditions similar to those providing DNA adsorption onto liposomes was studied. It was revealed that mouse fibroblasts (line A9) and myeloma cells bind phage and plasmid DNA in 0.3 M sucrose solution containing Mg2+-ions. Additional pretreatment of the cells by trypsin did not affect DNA adsorption efficiency. The major part of the adsorbed DNA recovered by salt treatment of the cells, but 10-15% of DNA was found to be irreversible. Up to 50% of the irreversibly bound DNA molecules retain their linear size after treatment of cells with DNAse I. Efficiencies of DNA adsorption and irreversibly binding depend on the concentration of Mg2+ in the medium. The process of DNA irreversible binding is not inhibited by drugs affecting cell metabolism. It is assumed that DNA adsorbs onto the phospholipid domains of the cell membrane, and part of the adsorbed DNA is taken up into the interior of the cells.  相似文献   

10.
The effects on the stringent control of ribosomal ribonculeic acid synthesis of the removal of cell wall, cold-shock treatment of cells, LiCl treatment of toluene-treated cells, and hypotonic treatment of spheroplasts were examined using Escherichia coli rel+ cells. Neither the removal of cell wall with penicillin or lysozyme nor the cold-shock treatment of the cells had an effect on the stringent control. The control mechanism, however, disappeared after the LiCl treatment of the toluene-treated cells, with the release of some protein component(s), possibly from the cytoplasmic membrane. The hypotonic and other treatments of spheroplasts, which disrupt the cytoplasmic membrane, also led to the abolishment of the control mechanism. These results suggested that the operation of the stringent control of ribosomal ribonucleic acid synthesis requires the cytoplasmic membrane, in which some proteins labile with LiCl treatment are embedded.  相似文献   

11.
Kre1p, the plasma membrane receptor for the yeast K1 viral toxin   总被引:6,自引:0,他引:6  
Breinig F  Tipper DJ  Schmitt MJ 《Cell》2002,108(3):395-405
Saccharomyces cerevisiae K1 killer strains are infected by the M1 double-stranded RNA virus encoding a secreted protein toxin that kills sensitive cells by disrupting cytoplasmic membrane function. Toxin binding to spheroplasts is mediated by Kre1p, a cell wall protein initially attached to the plasma membrane by its C-terminal GPI anchor. Kre1p binds toxin directly. Both cells and spheroplasts of Deltakre1 mutants are completely toxin resistant; binding to cell walls and spheroplasts is reduced to 10% and < 0.5%, respectively. Expression of K28-Kre1p, an inactive C-terminal fragment of Kre1p retaining its toxin affinity and membrane anchor, fully restored toxin binding and sensitivity to spheroplasts, while intact cells remained resistant. Kre1p is apparently the toxin membrane receptor required for subsequent lethal ion channel formation.  相似文献   

12.
We have recently reported that part of the chromosomal deoxyribonucleic acid (DNA) of Escherichia coli is associated with the outer membrane fraction and that an outer membrane protein having a molecular weight of 31,000 probably is involved in this association (H. Wolf-Watz and A. Norqvist, J. Bacteriol. 140:43-49, 1979). We have now found that F' merodiploid strains containing two copies of the DNA between bglB and ilv have increased levels of this protein and an increased amount of DNA in their outer membranes. Increased levels of the protein are also found when lambda asn phage, containing at 1.5-megadalton fragment of DNA located to the right of the uncA uncB genes but to the left of oriC, are induced. It therefore seems that this 1.5-megadalton fragment of DNA either codes for or binds to the 31,000-dalton outer membrane protein. Hybridization studies utilizing DNA found to be bound to outer membrane and DNA isolated from a specialized transducing phage lambda asn 132 revealed that at least 5 to 10% of outer membrane DNA has a DNA sequence homologous with a chromosomal segment carried by this oriC-containing phage.  相似文献   

13.
An in vitro recombinant ColE1-cos lambda deoxyribonucleic acid (DNA) molecule, pKY96, has 70% of the length of lambda phage DNA. The process of lambda phage-mediated transduction of pKY96 generated a small amount of transducing phage particles containing ColE1-cos lambda DNA molecules of 80 or 101% of the length of lambda phage DNA, in addition to those containing original pKY96 DNA molecules. The newly isolated larger plasmid DNAs were transduced 100 times more efficiently than pKY96 DNA. Their structures were compared with that of a prototype pKY96 DNA, and the mechanism of the formation of these molecules is discussed.  相似文献   

14.
G Ia Sherman 《Genetika》1975,11(5):127-131
The efficiency of phages T4rIIB-638v+ and T4rIIB-638v- transformation by native and denatured DNA treated with UV, nitrous acid, hydroxylamine and visible light in the presence of methylene blue is studied. A greater transformation efficiency of UV-irradiated T4r+ phage native and denatured DNA was observed in the v+ recipient as compared with v- recipients. Denatured donor DNA treated with nitrous acid has higher transformation activity in spheroplasts infected with T4v+ phage than in those infected with T4v- phage. Native donor DNA, treated with methylene blue and visible light-irradiated, developed a decrease of the transformation activity in T4v- phage-infected spheroplasts as compared with T4v+ phage-infected spheroplasts. Hydroxylamine treatment of native and denatured donor DNA did not reveal any differences in the transforming activity for v+ and v- recipients. Denatured donor DNA was more resistant to the effect of hydroxylamine than native DNA.  相似文献   

15.
The saccharose density gradient (30--55%) centrifugation technique applied to E. coli membrane preparations was used to show that treatment of the bacteria with Ca2+ in the cold results in the redistribution of the absorbed phage DNA from the cell wall to the cytoplasmic membrane while freezing-thawing of the bacteria leads to equal distribution of the infectious DNA among all membrane fractions. Quantitative estimation of such a redistribution is reported.  相似文献   

16.
Summary Some aspects of the involvment of the terminal reduntant regions of T7 DNA on phage production have been studied by transfection experiments with T7 DNA after treatment of the molecules with exonuclease or exonuclease plus exonuclease I. It was found that terminal 5 gaps between 0.08 and 6.4% of the total length did not decrease the infectivity of the molecules although such gaps cannot be filled directly by DNA polymerases. Rather, compared to fully native DNA the infectivity of gapped DNA increased up to 20 fold in rec + spheroplasts and up to 4 fold in recB spheroplasts. This indicates a protective function of the single-stranded termini against the recBC enzyme in rec + and possibly another unidentified exonuclease present also in recB. The possibility that spontaneous circularization of the gapped molecules in vivo provides protection against exonucleolytic degradation was tested by transfection with T7 DNA circularization in vitro by thermal annealing. Such molecules were separated from linear molecules by neutral sucrose gradient centrifugation. They displayed a 3 to 6 fold higher infectivity in rec + and recB compared to linear gapped molecules, which shows that T7 phage production may effectively start from circular DNA.When the 3 single-stranded ends from gapped molecules were degraded by treatment with exonuclease I the infectivity of the molecules was largely abolished in rec + and recB as soon as 40 to 80 base pairs had been removed per end. It is concluded that the terminal regions of T7 DNA molecules are essential for phage production and that the redundancy comprises probably considerably less than 260 base pairs. The results are discussed with respect to the mode of T7 DNA replication.  相似文献   

17.
Physiological states associated with inositol starvation of spheroplasts of Saccharomyces cerevisiae were investigated and compared with conditions preceding death of starved whole cells. In the absence of synthesis of inositol-containing lipids, cell surface expansion terminated after one doubling of whole cells. In spheroplasts, cessation of membrane expansion was apparently followed by rapid development of an osmotic imbalance, causing lysis. Continued synthesis and accumulation of cytoplasmic constituents within the limited cell volume were implicated as a cause of the osmotic imbalance. In whole cells, an increase in internal osmotic pressure also follows termination of membrane and cell wall expansion. The cell wall prevents lysis, allowing a state of increasing cytoplasmic osmotic pressure to persist in the period preceding onset of inositol-less death.  相似文献   

18.
Spheroplasts prepared by lysozyme treatment of cells of Pseudomonas aeruginosa, suspended in 20% sucrose or 0.2 m MgCl(2), were examined in detail. Preparation of spheroplasts in the presence of 0.2 m Mg(2+) released periplasmic alkaline phosphatase, whereas preparation in the presence of 20% sucrose did not, even though untreated cells released phosphatase when suspended in sucrose in the absence of lysozyme. Biochemical characterizations of the sucrose-lysozyme preparations indicated that lysozyme mediated a reassociation of the released phosphatase with the spheroplasts. In addition, the enzyme released from whole cells suspended in 20% sucrose (which represents 20 to 40% of the cell-bound phosphatase) reassociates with the cells in the presence of lysozyme. Electron microscopic examinations of various preparations revealed that phosphatase released in sucrose reassociated with the external cell wall layers in the presence of lysozyme, that sucrose-lysozyme prepared spheroplasts did not dissociate phosphatase which remained in the periplasm of sucrose-washed cells, and that phosphatase was never observed to be associated with the cytoplasmic membrane. A model to account for the binding of P. aeruginosa alkaline phosphatase to the internal portion of the tripartite layer of the cell wall rather than to the cytoplasmic membrane or peptidoglycan layer is presented.  相似文献   

19.
Bacteriophage phiX174 is an icosahedral phage which attaches to host cells without the aid of a complex tail assembly. When phiX174 was mixed with cell walls isolated from the bacterial host, the virions attached to the wall fragments and the phage deoxyribonucleic acid (DNA) was released. Attachment was prevented if the cell walls were treated with chloroform. Release of phage DNA, but not viral attachment, was prevented if the cell walls were incubated with lysozyme or if the virions were inactivated with formaldehyde. Treatment of the cell walls with lysozyme released structures which were of uniform size (6.5 by 25 nm). These structures attached phiX174 at the tip of one of its 12 vertices, but the viral DNA was not released. The virions attached to these structures were oriented with their fivefold axis of symmetry normal to the long axis of the structure. No virions were attached to these structures by more than one vertex. Freeze-etch preparations of phiX174 adsorbed to intact bacteria showed that the virions were submerged to one half their diameter into the host cell wall, and the fivefold axis of symmetry was normal to the cell surface. A second cell could not be attached to the outwardly facing vertex of the adsorbed phage and thus the phage could not cross-link two cells. When the virions were labeled with (3)H-leucine, purified, and adsorbed to Escherichia coli cells, about 15% of the radioactivity was recovered as low-molecular-weight material from spheroplasts formed by lysozyme-ethylenediaminetetraacetic acid. Other experiments revealed that about 7% of the total parental virus protein label could be recovered in newly formed progeny virus.  相似文献   

20.
T7 phage DNA eroded with lambda exonuclease (to create 3'-protruding strands) or exonuclease III (to create 5'-protruding strands) was treated under unwinding assay conditions with DNA helicase II. Single-stranded DNA-binding protein (of Escherichia coli or phage T4) was added to disentangle the denatured DNA and the complexes were examined in the electron microscope. DNA helicase II complexes filtered through a gel column before assay retain the ability to generate forks suggesting that DNA helicase II unwinds in a preformed complex by translocating along the bound DNA strand. The enzyme initiates preferentially at the ends of the lambda-exonuclease-treated duplexes and is found at a fork on the initially protruding strand. It also initiates at the ends of the exonuclease-III-treated duplexes where, as with approximately 5% of the forks traceable back to a single-stranded gap, it is found on the initially recessed strand. The results are consistent with the view that DNA helicase II unwinds in the 3'-5' direction relative to the bound strand. They also confirm that the enzyme can initiate at the end of a fully base-paired strand. At a fork, DNA helicase II is bound as a tract of molecules of approximately 110 nm in length. Tracts of enzyme assemble from non-cooperatively bound molecules in the presence of ATP. During unwinding, DNA helicase II apparently can translocate to the displaced strand which conceivably can deplete the leading strand of the enzyme. Continued adsorption of enzyme to DNA might replenish forks arrested by strand switch of the unwinding enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号