共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T W Jones A Wallin H Thor R G Gerdes K Ormstad S Orrenius 《Archives of biochemistry and biophysics》1986,251(2):504-513
Isolated renal epithelial cells were used to study the mechanism of toxicity of pentachlorobutadienyl-glutathione (PCBG), a nephrotoxic glutathione conjugate of hexachlorobutadiene. The cytotoxicity of PCBG displayed a very steep dose-response relationship; at 10 microM PCBG no toxicity was observed whereas 25, 50, and 100 microM PCBG all resulted in a similar degree of toxicity. In all cases, loss of cell viability was observed only after a 30-min lag period and reached a plateau of 50 to 60% nonviable cells between 90 and 100 min. Toxic doses of PCBG also resulted in the depletion of cellular thiols. Blocking PCBG metabolism by inhibition of gamma-glutamyl transpeptidase [1-gamma-L-glutamyl-2-(2-carboxyphenyl)hydrazine (anthglutin), 2 mM] or renal cysteine conjugate beta-lyase (aminooxyacetic acid, 0.5 mM) resulted in complete protection against PCBG-induced cell damage. Exposure of isolated renal epithelial cells to 100 microM PCBG resulted in the rapid formation of plasma membrane blebs which appeared to be associated with a loss of Ca2+ from the mitochondrial compartment and an elevation of cytosolic Ca2+ concentration as measured by Quin-2. PCBG treatment also resulted in the inhibition of cell respiration and a marked depletion of cellular ATP content, indicating additional mitochondrial effects of the toxin. Our results support a role for renal cysteine conjugate beta-lyase in the metabolic activation of PCBG and suggest that PCBG-induced renal cell injury may be the result of selective effects on mitochondrial function. 相似文献
3.
The localization of renal glutathione oxidase activity studied in the isolated, perfused rat kidney 总被引:1,自引:0,他引:1
The metabolism of extracellular glutathione was studied in the isolated, perfused rat kidney. Both recirculating and single-pass perfusions were associated with rapid conversion of reduced glutathione to glutathione disulfide in the perfusate. Only a minor fraction of perfusate glutathione was recovered in urine; however, this fraction was markedly increased in the presence of the inhibitor of γ-glutamyltransferase, serine·borate. In contrast, serine·borate had no effect on either oxidation or disappearance of perfusate glutathione. The results indicate that renal glutathione oxidase activity is restricted to glutathione present in plasma, while γ-glutamyltransferase acts on glutathione in the glomerular filtrate. 相似文献
4.
Toxicity of S-pentachlorobutadienyl-L-cysteine studied with isolated rat renal cortical mitochondria
A Wallin T W Jones A E Vercesi I Cotgreave K Ormstad S Orrenius 《Archives of biochemistry and biophysics》1987,258(2):365-372
The subcellular mechanism of alkenyl halide S-conjugate-induced nephrotoxicity was studied in mitochondria isolated from rat kidney cortex in vitro using the cysteine conjugate of hexachloro-1,3-butadiene, i.e., S-pentachlorobutadienyl-L-cysteine (PCBC) as a model substrate. Respiring mitochondria exposed to various concentrations of PCBC exhibited a dose-dependent loss of ability to retain calcium. This phenomenon was associated with a sudden collapse of the mitochondrial membrane potential. PCBC caused a slow nonenzymatic depletion of mitochondrial glutathione. This was not due to oxidation or formation of mixed disulfides, and was efficiently counteracted by preincubation with aminooxyacetic acid, an inhibitor of cysteine-conjugate beta-lyase activity. PCBC inhibited state 3 respiration in the presence of succinate as substrate, which indicates that the activity of succinate dehydrogenase was affected. Thus, the present data confirm that impairment of mitochondrial function is a feature of nephrotoxicity mediated by alkenyl halide S-conjugates. We suggest a pathway involving interaction of beta-lyase-dependent reactive metabolite with the mitochondrial inner membrane, loss of membrane potential, disturbance of Ca2+ homeostasis, and subsequent respiratory insufficiency as a mechanism for renal tubular cytotoxicity. 相似文献
5.
6.
Renal and hepatic GSH (reduced glutathione) S-transferase were compared with respect to substrate and inhibitory kinetics and hormonal influences in vivo. An example of each of five classes of substrates (aryl, aralkyl, epoxide, alkyl and alkene) was used. In the gel filtration of renal or hepatic cytosol, an identical elution volume was found for all the transferase activities. Close correspondence in Km values was found for aryl, epoxide- and alkyl-transferase activities, with only the aralkyl activity significantly lower in kidney. Probenecid and p-aminohippurate were competitive inhibitors of renal aryl-, aralkyl-, epoxide- and alkyl-transferase activities and inhibited renal alkene activity. Close correspondence in Ki values for inhibition by probenecid of these activities in kidney and liver was found. In addition, furosemide was a potent competitive inhibitor of renal alkyl-transferase activity. Hypophysectomy resulted in significant increases in aryl-, araklyl-, and expoxide-transferase activities in liver and kidney. The hypophysectomy-induced increases in renal aryl- and aralkyl-transferase activities (approx. 100%) were more than twofold greater than increases in hepatic activities (approx. 40%). Administration of thyroxine prevented the hypophysectomy-induced increase in aryltransferase activity in both kidney and liver. The renal GSH S-transferases, in view of similarities to the hepatic activities, may play a role as cytoplasmic organic-anion receptors, as previously proposed for the hepatic enzymes. 相似文献
7.
Increased loss and decreased synthesis of hepatic glutathione after acute ethanol administration. Turnover studies. 总被引:6,自引:0,他引:6 下载免费PDF全文
The effect of acute ethanol administration on rates of synthesis and utilization of hepatic glutathione (GSH) was studied in rats after a pulse of [35S]cysteine. A 35% decrease in hepatic GSH content 5h after administration of 4 g of ethanol/kg body wt. was accompanied by a 33% increase in the rate of GSH utilization. The decrease occurred without increases in hepatic oxidized glutathione (GSSG) or in the GSH/GSSG ratio. The rate of non-enzymic condensation of GSH with acetaldehyde could account for only 6% of the rate of hepatic GSH disappearance. The increased loss of [35S]GSH induced by ethanol was not accompanied by an increased turnover; rather, a 30% inhibition of GSH synthesis balanced the increased rate of loss, leaving the turnover rate unchanged. The rate of acetaldehyde condensation with cysteine in vitro occurred at about one-third of the rate of GSH loss in ethanol-treated animals. However, ethanol induced only a minor decrease in liver cysteine content, which did not precede, but followed, the decrease in GSH. The characteristics of 2-methylthiazolidine-4-carboxylic acid, the condensation product between acetaldehyde and cysteine, were studied and methodologies were developed to determine its presence in tissues. It was not found in the liver of ethanol-treated animals. Ethanol administration led to a marked increase (47%) in plasma GSH in the post-hepatic inferior vena cava, but not in its pre-hepatic segment. Data suggest that an increased loss of GSH from the liver constitutes an important mechanism for the decrease in GSH induced by ethanol. In addition, an inhibition of GSH synthesis is observed. 相似文献
8.
9.
The toxicity of menadione (2-methyl-1,4-naphthoquinone) and two thioether conjugates studied with isolated renal epithelial cells 总被引:1,自引:0,他引:1
Menadione (2-methyl-1,4-naphthoquinone) was used as a model compound to test the hypothesis that thioether conjugates of quinones can be toxic to tissues associated with their elimination through a mechanism involving oxidative stress. Unlike menadione, the glutathione (2-methyl-3-(glutathion-S-yl)-1,4-naphthoquinone; MGNQ) and N-acetyl-L-cysteine (2-methyl-3-(N-acetylcysteine-S-yl)-1,4-naphthoquinone; M(NAC)NQ) thioether conjugates were not able to arylate protein thiols but were still able to redox cycle with cytochrome c reductase/NADH and rat kidney microsomes and mitochondria. Interestingly, menadione and M(NAC)NQ were equally toxic to isolated rat renal epithelial cells (IREC) while MGNQ was nontoxic. The toxicity of both menadione and M(NAC)NQ was preceded by a rapid depletion of soluble thiols and was associated with a depletion of soluble thiols and was associated with a depletion of protein thiols. Treatment of IREC with the glutathione reductase inhibitor, 1,3-bis(2-chloroethyl)-1-nitrosourea, potentiated the thiol depletion and toxicity observed with menadione and M(NAC)NQ indicating the involvement of oxidative stress in this model of renal cell toxicity. The lack of MGNQ toxicity can be attributed to an intramolecular cyclization reaction which destroys the quinone nucleus and therefore eliminates its ability to redox cycle. These findings have important implications with regard to our understanding of the toxic potential of quinone thioether conjugates and of quinone toxicity in general. 相似文献
10.
Shinji Higashiyama Megumi Noda Satoko Muraoka Naoki Uyama Norifumi Kawada Takeshi Ide Masaya Kawase Kiyohito Yagi 《Biochemical Engineering Journal》2004,20(2-3):113-118
Hepatic stellate cells (HSCs) are a type of nonparenchymal liver cells (NPCs) and are present in the perisinusoidal space of Disse. Hepatocytes were cocultured with HSCs isolated from the NPC fraction with the aim of maintaining differentiated liver functions in vitro. Hepatocytes inoculated directly onto the HSC layer (Co-mix) exhibited lower activity of albumin secretion and higher DNA synthesis activity than hepatocytes of the monoculture control. On the contrary, hepatocytes cocultured with HSCs but separated by a semipermeable membrane (Co-sep) maintained the activities of albumin secretion and urea synthesis. The soluble factor(s) secreted from HSCs had the maintenance effect. Subcultured HSCs were activated to myofibroblast-like cells (MFBs) and decreased the maintenance effect on hepatocyte function. However, the MFBs were found to resume the ability to maintain the hepatocyte function by cultivation on type I collagen. The coculture of hepatocytes and HSCS/MFB could be applied to the development of bioartificial liver support system and liver regenerative medicine. 相似文献
11.
Gluconeogenesis in isolated hepatic parenchymal cells 总被引:3,自引:0,他引:3
12.
13.
14.
Turnover of hepatic catalase modified by aminotriazole 总被引:1,自引:0,他引:1
15.
1. Rat-hepatic cells in suspension have been shown to have an endogenous respiration of 5·6±0·17 when suspended in 0·1 m-sucrose and 0·02 m-tris–hydrochloric acid buffer. The respiration in 0·25 m-sucrose and 0·02 m-tris–hydrochloric acid buffer is 30–40% less. 2. Potassium chloride (0·05 m) is slightly inhibitory and calcium chloride (0·0025 m) highly inhibitory to endogenous respiration of the hepatic cells in suspension. The cells do not respire in Krebs–Ringer phosphate buffer. 3. The respiration of the hepatic cells in suspension is stimulated by pyruvate, citrate, isocitrate, oxoglutarate, succinate, fumarate, malate and glutamate; there is no significant stimulation (or inhibition) by glucose, fructose, acetate and butyrate. In almost all the cases where stimulation was observed, it was found that the higher the endogenous respiration the lower is the stimulation. 相似文献
16.
Glutathione conjugation by isolated lung cells and the isolated, perfused lung. Effect of extracellular glutathione 总被引:4,自引:0,他引:4
Cells isolated from rat lung by protease digestion were found to catalyze the reduced glutathione (GSH) conjugation of 1-chloro-2,4-dinitrobenzene. The rate of conjugation was stimulated severalfold in the presence of GSH, indicating uptake and utilization of extracellular GSH by the lung cells. The stimulation was dependent on the GSH concentration and not due to a spontaneous nonenzymatic reaction or to extracellular GSH-transferase activity. Conjugation of 1-chloro-2,4-dinitrobenzene was also measured using isolated perfused rat lung. The conjugation, which was linear for a longer time than with the isolated cells, was also stimulated in the presence of GSH in the perfusion medium. The results indicate the ability of rat lung to utilize extracellular GSH. 相似文献
17.
18.
V. I. Kulinsky L. S. Kolesnichenko 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2010,4(3):224-227
During recent years the nuclear localization of glutathione has been confirmed and this fraction has been quantitatively determined. The nuclear GSH and the enzymes of its metabolism realize independent and important functions. They considerably differ from functions of hyaloplasmic and mitochondrial GSH. Glutathione interacts with regulatory pathways, involved into signal transmission into the nucleus. 相似文献
19.
The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels 总被引:12,自引:0,他引:12
A functional analysis of the role of glutathione in protecting plants from environmental stress was undertaken by studying Arabidopsis that had been genetically modified to have altered glutathione levels. The steady-state glutathione concentration in Arabidopsis plants was modified by expressing the cDNA for gamma-glutamyl-cysteine synthetase (GSH1) in both the sense and antisense orientation. The resulting plants had glutathione levels that ranged between 3% and 200% of the level in wild-type plants. Arabidopsis plants with low glutathione levels were hypersensitive to Cd due to the limited capacity of these plants to make phytochelatins. Plants with the lowest levels of reduced glutathione (10% of wild type) were sensitive to as little as 5 microM Cd, whereas those with 50% wild-type levels required higher Cd concentrations to inhibit growth. Elevating glutathione levels did not increase metal resistance. It is interesting that the plants with low glutathione levels were also less able to accumulate anthocyanins supporting a role for glutathione S-transferases for anthocyanin formation or for the vacuolar localization and therefore accumulation of these compounds. Plants with less than 5% of wild-type glutathione levels were smaller and more sensitive to environmental stress but otherwise grew normally. 相似文献
20.
Mitochondrial and peroxisomal oxidation of arachidonic and eicosapentaenoic acid studied in isolated liver cells 总被引:1,自引:0,他引:1
The partitioning between peroxisomal and mitochondrial beta-oxidation of [1-14C]eicosapentaenoic acid (20:5(n-3] and [1-14C]arachidonic acid (20:4(n-6)) was studied. In hepatocytes from fasted rats approximately 70% of the fatty acid substrate was oxidized with oleic, linoleic, eicosapentaenoic and docosahexaenoic (22:6(n-3)) acid, even more with adrenic (22:4(n-6)) and less with arachidonic acid. When the mitochondrial oxidation was suppressed by fructose refeeding and by (+)-decanoylcarnitine, the fatty acid oxidation in per cent of that in cells from fasted rats was with 18:1(n-9) 7%, 18:2(n-6) 8%, 20:4(n-6) 12%, 20:5(n-3) 20%, 22:4(n-6) 57% and for 22:6(n-3) 29%. The fraction of 14C recovered in palmitate and other newly synthesized fatty acids after fructose refeeding decreased in the order 22:4(n-6) greater than 22:6(n-3) greater than 20:5(n-3) greater than 20:4(n-6) and was very small with 18:1(n-9) and 18:2(n-6). In cells from both fed and fructose-refed animals 20:5(n-3) was efficiently elongated to 22:5(n-3) and 22:6(n-3). 20:5(n-3) and 20:4(n-6) were not elongated after fasting. The phospholipid incorporation with [1-14C]20:5(n-3) decreased during prolonged incubations while it remained stable with [1-14C]arachidonic acid. The results suggest that peroxisomes contribute more to the oxidation of 20:5(n-3) than with 20:4(n-6) although both substrates are probably oxidized mainly in the mitochondria. 相似文献