首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caffeic acid phenethyl ester has been shown to have anti-inflammatory and anti-cancer effects. We examined the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced production of nitric oxide and prostaglandin E(2), and expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 macrophages. We also investigated the effects of caffeic acid phenethyl ester on lipopolysaccharide-induced septic shock in mice. Our results indicate that caffeic acid phenethyl ester inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production in a concentration-dependent manner and inhibits inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells, without significant cytotoxicity. To further examine the mechanism responsible for the inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by caffeic acid phenethyl ester, we examined the effect of caffeic acid phenethyl ester on lipopolysaccharide-induced nuclear factor-kappaB activation and the phosphorylation of mitogen-activated protein kinases. Caffeic acid phenethyl ester treatment significantly reduced nuclear factor-kappaB translocation and DNA-binding in lipopolysaccharide-stimulated RAW 264.7 cells. This effect was mediated through the inhibition of the degradation of inhibitor kappaB and by inhibition of both p38 mitogen-activated protein kinase and extracellular signal-regulated kinase phosphorylation, at least in part by inhibiting the generation of reactive oxygen species. Furthermore, caffeic acid phenethyl ester rescued C57BL/6 mice from lethal lipopolysaccharide-induced septic shock, while decreasing serum levels of tumor necrosis factor-alpha and interleukin-1beta. Collectively, these results suggest that caffeic acid phenethyl ester suppresses the induction of cytokines by lipopolysaccharide, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression, by blocking nuclear factor-kappaB and p38/ERK activation. These findings provide mechanistic insights into the anti-inflammatory and chemopreventive actions of caffeic acid phenethyl ester in macrophages.  相似文献   

2.
3.
The discovery of drugs for the treatment of allergic disease is an important subject in human health. The Artemisia iwayomogi (Compositae) (AIE) has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. In this report, we investigated the effect of AIE on the mast cell-mediated allergy model and studied the possible mechanism of action. AIE inhibited compound 48/80-induced systemic reactions and plasma histamine release in mice. AIE decreased immunoglobulin E (IgE)-mediated local allergic reaction, passive cutaneous anaphylaxis (PCA) reaction. AIE dose dependently attenuated histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. AIE decreased the compound 48/80-induced intracellular Ca(2+). Furthermore, AIE decreased the phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated tumor necrosis factor-alpha and interleukin-6 gene expression and production in human mast cells. The inhibitory effect of AIE on the proinflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) dependent. AIE attenuated PMA plus A23187-induced degradation of IkappaBalpha and nuclear translocation of NF-kappaB and specifically blocked activation of p38 MAPK but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that AIE inhibits mast cell-derived immediate-type allergic reactions and involvement of intracellular Ca(2+), proinflammatory cytokines, p38 MAPK, and NF-kappaB in these effects.  相似文献   

4.
Adiponectin is an adipokine with potent anti-inflammatory properties. We previously reported that a globular adiponectin (gAd) suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced nuclear factor-κB activity, suggesting an anti-inflammatory effect of gAd. In this study, we investigated whether gAd is able to modulate the effect of A. actinomycetemcomitans lipopolysaccharide on cytokine induction in a murine macrophage cell line (RAW 264). The phosphorylation of p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and IκB kinase α/β and the degradation of IκB, which were induced by A. actinomycetemcomitans lipopolysaccharide intoxication, were clearly reduced in gAd-pretreated RAW 264 cells compared with the untreated cells. Expression levels of tumor necrosis factor (TNF)-α and interleukin-10 (IL-10) mRNA were assessed by real-time PCR. Cell-free supernatants were collected after 12 h of stimulation and analyzed by enzyme-linked immunosorbent assay for TNF-α and IL-10. Pretreatment with gAd significantly inhibited the A. actinomycetemcomitans lipopolysaccharide-induced TNF-α mRNA expression and protein secretion. In contrast, pretreatment with gAd significantly enhanced the A. actinomycetemcomitans lipopolysaccharide-induced IL-10 mRNA expression and protein secretion. These data suggest a mechanism for the anti-inflammatory activity of gAd in local inflammatory lesions, such as periodontitis.  相似文献   

5.
The inhibitory effects of green tea proanthocyanidins on cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) release were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. Prodelphinidin B2 3,3' di-O-gallate (PDGG) caused a dose-dependent inhibition of COX-2 at both mRNA and protein levels with the attendant release of PGE(2). Molecular evidence revealed that PDGG inhibited the degradation of Ikappa-B, nuclear translocation of p65 and CCAAT/enhancer-binding protein (C/EBP)delta, and phosphorylation of c-Jun, but not CRE-binding protein (CREB), which regulate COX-2 expression. Moreover, PDGG suppressed the activations of mitogen-activated protein kinase (MAPK) including c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38 kinase. The results demonstrated that PDGG suppressed COX-2 expression via blocking MAPK-mediated activation of nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1) and C/EBPdelta. Furthermore, studies on structure-activity relationship using five kinds of proanthocyanidins revealed that the galloyl moiety of proanthocyanidins appeared important to their inhibitory actions. Thus, our findings provide the first molecular basis that green tea proanthocyanidins with the galloyl moiety might have anti-inflammatory properties through blocking MAPK-mediated COX-2 expression.  相似文献   

6.
Antiallergic effects of Vitis amurensis on mast cell-mediated allergy model   总被引:1,自引:0,他引:1  
In this study, we investigated the effect of the methanol extract of fruits of Vitis amurensis Rupr. (Vitaceae; MEVA) on the mast cell-mediated allergy model and studied the possible mechanism of action. Mast cell-mediated allergic disease is involved in many diseases, such as asthma and sinusitis. The discovery of drugs for the treatment of allergic disease is an important subject in human health. MEVA inhibited compound 48/80-induced systemic reactions and serum histamine release in a dose-dependent manner in mice. MEVA decreased immunoglobulin E (IgE)-mediated local allergic reactions, passive cutaneous anaphylaxis. MEVA dose-dependently reduced histamine release from mast cells activated by compound 48/80 or IgE. The inhibitory effect of MEVA on histamine release was mediated by the modulation of intracellular calcium. In addition, MEVA attenuated the phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-stimulated secretion of tumor necrosis factor-alpha, interleukin-6 (IL-6), and IL-8 in human mast cells. The inhibitory effect of MEVA on these proinflammatory cytokines was p38 mitogen-activated protein kinase and nuclear factor-kappaB (NF-kappaB) dependent. Our findings provide evidence that MEVA inhibits mast cell-derived, immediate-type allergic reactions and involvement of proinflammatory cytokines, p38 MAPK, and NF-kappaB in these effects.  相似文献   

7.
Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated.  相似文献   

8.
9.
Mast cells secrete multiple cytokines and play an important role in allergic inflammation. Although it is widely accepted that bacteria infection occasionally worsens allergic airway inflammation, the mechanism has not been defined. In this study, we show that LPS induced Th2-associated cytokine production such as IL-5, IL-10, and IL-13 from mast cells and also synergistically enhanced production of these cytokines induced by IgE cross-linking. LPS-mediated Th2-type cytokine production was abolished in mouse bone marrow-derived mast cells derived from C3H/HeJ mice, suggesting that Toll-like receptor 4 is essential for the cytokine production. Furthermore, we found that mitogen-activated protein kinases including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 kinase were activated by LPS stimulation in bone marrow-derived mast cells. Inhibition of extracellular signal-regulated kinase activation has little effect on LPS-mediated cytokine production. In contrast, inhibition of c-Jun N-terminal kinase activation significantly suppressed both IL-10 and IL-13 expression at both mRNA and protein levels. Interestingly, although inhibition of p38 did not down-regulate the mRNA induction, it moderately decreased all three cytokine productions by LPS. These results indicate that LPS-mediated production of IL-5, IL-10, and IL-13 was distinctly regulated by mitogen-activated protein kinases. Our findings may indicate a clue to understanding the mechanisms of how bacteria infection worsens the clinical features of asthma.  相似文献   

10.
The present study shows that ES products from plerocercoids of Spirometra erinaceieuropaei suppressed interleukin-1beta mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages in the absence or presence of a cyclic AMP analogue, dibutyryl cyclic AMP. Investigation using the inhibitors of mitogen-activated protein kinase (MAPK) pathways revealed that extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase pathways are crucial for full induction of interleukin-1beta mRNA expression. ES products additionally suppressed interleukin-1beta mRNA expression in the cells treated with p38 mitogen-activated protein kinase inhibitor (SB203580) or extracellular signal-regulated protein kinase 1/2 inhibitor (PD98059). Western blot analysis showed that dibutyryl cyclic AMP enhanced lipopolysaccharide-induced phosphorylation of extracellular signal-regulated protein kinase 1/2, p38 mitogen-activated protein kinase and cyclic AMP responsive element binding protein (CREB) and, in turn, we demonstrated that ES products reduced the lipopolysaccharide and dibutyryl cyclic AMP-induced phosphorylation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase, but not cyclic AMP responsive element binding protein. These data demonstrate that ES products from the plerocercoids of S. erinaceieuropaei may evade induction of interleukin-1beta mRNA by inhibiting extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase pathways in lipopolysaccharide and/or dibutyryl cyclic AMP-stimulated macrophages.  相似文献   

11.
Coordinated expression and upregulation of interleukin-1alpha, interleukin-1beta, tumor necrosis factor-alpha, interleukin-6, granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemotactic protein-1 (MCP-1) and epithelial cell derived neutrophil activator-78, with chemoattractant and proinflammatory properties of various cytokine families, were obtained in the intestinal epithelial cell line Int407 upon Vibrio cholerae infection. These proinflammatory cytokines also showed increased expression in T84 cells, except for interleukin-6, whereas a striking dissimilarity in cytokine expression was observed in Caco-2 cells. Gene expression studies of MCP-1, granulocyte-macrophage colony-stimulating factor, interleukin-1alpha, interleukin-6 and the anti-inflammatory cytokine transforming growth factor-beta in Int407 cells with V. cholerae culture supernatant, cholera toxin, lipopolysaccharide and ctxA mutant demonstrated that, apart from cholera toxin and lipopolysaccharide, V. cholerae culture supernatant harbors strong inducer(s) of interleukin-6 and MCP-1 and moderate inducer(s) of interleukin-1alpha and granulocyte-macrophage colony-stimulating factor. Cholera toxin- or lipopolysaccharide-induced cytokine expression is facilitated by activation of nuclear factor-kappaB (p65 and p50) and cAMP response element-binding protein in Int407 cells. Studies with ctxA mutants of V. cholerae revealed that the mutant activates the p65 subunit of nuclear factor-kappaB and cAMP response element-binding protein, and as such the activation is mediated by cholera toxin-independent factors as well. We conclude that V. cholerae elicits a proinflammatory response in Int407 cells that is mediated by activation of nuclear factor-kappaB and cAMP response element-binding protein by cholera toxin, lipopolysaccharide and/or other secreted products of V. cholerae.  相似文献   

12.
S Goetze  X P Xi  K Graf  E Fleck  W A Hsueh  R E Law 《FEBS letters》1999,452(3):277-282
The thiazolidinedione troglitazone inhibits angiotensin II-induced extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activity in vascular smooth muscle cells. Activation of extracellular signal-regulated kinase 1/2 by angiotensin II is a multistep process involving both its phosphorylation by mitogen-activated protein kinase extracellular signal-regulated kinase kinase in the cytoplasm and a subsequent translocation to the nucleus. The cytoplasmic activation of extracellular signal-regulated kinase 1/2 in vascular smooth muscle cells proceeds through the protein kinase Czeta --> mitogen-activated protein kinase extracellular signal-regulated kinase kinase --> extracellular signal-regulated kinase pathway. Troglitazone did not affect the angiotensin II-induced activation of protein kinase Czeta or its downstream signaling kinases extracellular signal-regulated kinase 1/2 in the cytosol. In contrast, angiotensin II-induced activation of protein kinase Czeta and extracellular signal-regulated kinase 1/2 in the nucleus were both inhibited by troglitazone. Nuclear translocation of extracellular signal-regulated kinase 1/2 induced by angiotensin II was completely blocked by troglitazone. Protein kinase Czeta, however, did not translocate upon angiotensin II stimulation. Troglitazone, therefore, inhibits both angiotensin II-induced nuclear translocation of extracellular signal-regulated kinase 1/2 and the nuclear activity of its upstream signaling kinase protein kinase Czeta. Since extracellular signal-regulated kinase 1/2 nuclear translocation may be a critical signaling step for multiple growth factors that stimulate vascular smooth muscle cells proliferation and migration, troglitazone may provide a new therapeutical approach for the prevention and treatment of atherosclerosis and restenosis.  相似文献   

13.
The Ca(2+)-promoted Ras inactivator (CAPRI), a Ras GTPase-activating protein, is involved in the inactivation of mitogen-activated protein kinase pathway. However, a precise role of CAPRI in immune responses is still unknown. Here we showed that overexpression of CAPRI suppresses antigen-induced degranulation and cytokine production in mast cells (RBL cells). Antigen elicited the translocation of CAPRI to the plasma membrane from the cytoplasm, which was concomitant with the increase in the intracellular Ca(2+) concentration. The nuclear import of extracellular signal-regulated kinase 2 (ERK2) occurred after the re-localization of CAPRI to the cytoplasm in the mast cells, suggesting that the early phase of ERK2 activation is eliminated. A mutant of GAP-related domain, CAPRI(R472S), showed a feeble translocation to the plasma membrane but did not affect the degranulation, ERK2 activation, and cytokine production. The results suggested that the translocation of CAPRI to the plasma membranes regulates crucially cellular responses in mast cells.  相似文献   

14.
BACKGROUND: Mast cells are primary mediators of allergic inflammation. Antigen-mediated crosslinking of their cell surface immunoglobulin E (IgE) receptors results in degranulation and the release of proinflammatory mediators including histamine, tumor necrosis factor-alpha, and leukotrienes. METHODS: Mast cells were stimulated to degranulate by using either IgE crosslinking or ionophore treatment. Exogenously added annexin-V was used to stain exocytosing granules, and the extent of binding was measured flow cytometrically. Release of the enzyme beta-hexosaminidase was used for population-based measurements of degranulation. Two known inhibitors of degranulation, the phosphatidylinositol 3 kinase inhibitor wortmannin and overexpression of a mutant rab3d protein, were used as controls to validate the annexin-V binding assay. RESULTS: Annexin-V specifically bound to mast cell granules exposed after stimulation in proportion to the extent of degranulation. Annexin-V binding was calcium dependent and was blocked by phosphatidylserine containing liposomes, consistent with specific binding to this membrane lipid. Visualization of annexin-V staining showed granular cell surface patches that colocalized with the exocytic granule marker VAMP-green fluorescent protein (GFP). Wortmannin inhibited both annexin-V binding and beta-hexosaminidase release in RBL-2H3 cells, as did the expression of a dominant negative rab3d mutant protein. CONCLUSIONS: The annexin-V binding assay represents a powerful new flow cytometric method to monitor mast cell degranulation for functional analysis.  相似文献   

15.
16.
17.
Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin(-/-) cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis.  相似文献   

18.
Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.  相似文献   

19.
Antioxidants are able to inhibit inflammatory gene expression in response to lipopolysaccharide via down-regulating generation of intracellular reactive oxygen species (ROS) as second messengers. The effect of manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a synthetic metalloporphyrin with antioxidant activity, on tumor necrosis factor (TNF)-alpha production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells was examined. MnTBAP prevented the generation of intracellular ROS in lipopolysaccharide-stimulated RAW 264.7 cells and further inhibited lipopolysaccharide-induced TNF-alpha production. MnTBAP exclusively prevented the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK/JNK) whereas it did not affect the phosphorylation and activation of nuclear factor-kappaB and extracellular signal regulated kinase 1/2. MnTBAP was suggested to inhibit lipopolysaccharide-induced TNF-alpha production by the prevention of intracellular ROS generation and subsequent inactivation of p38 MAPK and SAPK/JNK.  相似文献   

20.
Tumors produce a variety of immunosuppressive factors which can prevent the proliferation and maturation of a number of normal hemopoietic cell types. We have investigated whether primary acute myeloid leukemia (AML) cells have an effect on normal T cell function and signaling. Tumor cell supernatant (TSN) from AML cells inhibited T cell activation and Th1 cytokine production and also prevented activated T cells from entering the cell cycle. These effects occurred in the absence of AML cell-T cell contact. We have demonstrated that AML TSN contained none of the immunosuppressors described to date, namely gangliosides, nitric oxide, TGF-beta, IL-10, vascular endothelial growth factor, or PGs. Furthermore, IL-2 did not overcome the block, despite normal IL-2R expression. However, the effect was overcome by preincubation with inhibitors of protein secretion and abolished by trypsinization, indicating that the active substance includes one or more proteins. To determine the mechanism of inhibition, we have studied many of the major pathways involved in T cell activation and proliferation. We show that nuclear translocation of NFATc and NF-kappaB are markedly reduced in T cells activated in the presence of primary AML cells. In contrast, calcium mobilization and activation of other signal transduction pathways, namely extracellular signal-regulated kinase1/2, p38, and STAT5 were unaffected, but activation of c-Jun N-terminal kinase 1/2 was delayed. Phosphorylation of pRb by cyclin-dependent kinase 6/4-cyclin D and of p130 did not occur and c-Myc, cyclin D3, and p107 were not induced, consistent with cell cycle inhibition early during the transition from G(0) to G(1). Our data indicate that TSN generated by AML cells induces T cell immunosuppression and provides a mechanism by which the leukemic clone could evade T cell-mediated killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号