首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po(2) [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po(2) dependence of oxygen consumption, Vo(2), proportional to the rate of Po(2) decrease. Fitting equations obtained from a model of heterogeneous intracellular Po(2) were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of Vo(2) on Po(2). This curve consists of two regions connected by the point for critical Po(2) of the cell (i.e., Po(2) at the sarcolemma when the center of the cell becomes anoxic). The critical Po(2) was below the Po(2) for half-maximal respiratory rate (P(50)) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O(2)/cm(3)·s and mitochondrial P(50) was k = 10.5 ± 0.8 mmHg. The range of Po(2) values inside the muscle fibers was found to be 4-5 mmHg at the critical Po(2). The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po(2) was substantially lower than the interstitial Po(2) of 53 ± 2 mmHg, a finding that indicates that Vo(2) under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue.  相似文献   

2.
Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O2 ratio of about 5–6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank–Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure.  相似文献   

3.
The relationship between cerebral interstitial oxygen tension (Pt(O(2))) and cellular energetics was investigated in mechanically ventilated, anesthetized rats during progressive acute hypoxia to determine whether there is a "critical" brain Pt(O(2)) for maintaining steady-state aerobic metabolism. Cerebral Pt(O(2)), measured by electron paramagnetic resonance oximetry, decreased proportionately to inspired oxygen fraction. (31)P-nuclear magnetic resonance measurements revealed no changes in P(i), phosphocreatine (PCr)/P(i) ratio, or intracellular pH when arterial blood oxygen tension (Pa(O(2))) was reduced from 145.1 +/- 11.7 to 56.5 +/- 4.4 mmHg (means +/- SE). Intracellular acidosis, a sharp rise in P(i), and a decline in the PCr/P(i) ratio developed when Pa(O(2)) was reduced further to 40.7 +/- 2.3 mmHg. The corresponding Pt(O(2)) values were 15.1 +/- 1.8, 8.8 +/- 0.4, and 6.8 +/- 0.3 mmHg. We conclude that over a range of decreasing oxygen tensions, cerebral oxidative metabolism is not sensitive to oxygen concentration. Oxygen becomes a regulatory substrate, however, when Pt(O(2)) is decreased to a critical level.  相似文献   

4.
We have developed an optical method for the evaluation of the oxygen consumption (Vo(2)) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po(2), together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po(2) values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po(2) decreased rapidly and the initial slope of the ODC was used to calculate the Vo(2). Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of Vo(2). The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was Vo(2) = 123.4 ± 13.4 (SE) nl O(2)/cm(3) · s (N = 38, within 6 muscles) at a baseline interstitial Po(2) of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle.  相似文献   

5.
Previous studies have shown that increased oxygen delivery, via increased convection or arterial oxygen content, does not speed the dynamics of oxygen uptake, Vo(2m), in dog muscle electrically stimulated at a submaximal metabolic rate. However, the dynamics of transport and metabolic processes that occur within working muscle in situ is typically unavailable in this experimental setting. To investigate factors affecting Vo(2m) dynamics at contraction onset, we combined dynamic experimental data across working muscle with a mechanistic model of oxygen transport and metabolism in muscle. The model is based on dynamic mass balances for O(2), ATP, and PCr. Model equations account for changes in cellular ATPase, oxidative phosphorylation, and creatine kinase fluxes in skeletal muscle during exercise, and cellular respiration depends on [ADP] and [O(2)]. Model simulations were conducted at different levels of arterial oxygen content and blood flow to quantify the effects of convection and diffusion of oxygen on the regulation of cellular respiration during step transitions from rest to isometric contraction in dog gastrocnemius muscle. Simulations of arteriovenous O(2) differences and (.)Vo(2m) dynamics were successfully compared with experimental data (Grassi B, Gladden LB, Samaja M, Stary CM, Hogan MC. J Appl Physiol 85: 1394-1403, 1998; and Grassi B, Gladden LB, Stary CM, Wagner PD, Hogan MC. J Appl Physiol 85: 1404-1412, 1998), thus demonstrating the validity of the model, as well as its predictive capability. The main findings of this study are: 1) the estimated dynamic response of oxygen utilization at contraction onset in muscle is faster than that of oxygen uptake; and 2) hyperoxia does not accelerate the dynamics of diffusion and consequently muscle oxygen uptake at contraction onset due to the hyperoxia-induced increase in oxygen stores. These in silico derived results cannot be obtained from experimental observations alone.  相似文献   

6.
We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit.  相似文献   

7.
The synthesis of adrenal steroids requires molecular oxygen. Because arterial hypoxemia is a common clinical condition, the purpose of the present study was to examine steroidogenesis in vitro under physiological changes in O(2) tension (Po(2)) in cells from human adrenal glands with aldosterone-secreting adenomas (ASA; n=3) or with bilateral adrenal hyperplasia causing Cushing's syndrome (n=4). A decrease in Po(2) from 150 mmHg (mild hyperoxia) to 80 mmHg had minimal effect on steroid production. A reduction to 40 mmHg (still well within the physiological range) significantly inhibited cAMP- and ACTH-stimulated aldosterone, cortisol, and dehydroepiandrosterone (DHEA) production from ASA. Furthermore, cortisol and DHEA production in cells from histologically normal tissue, adjacent to ASA and from bilateral adrenal hyperplasias, was also inhibited under a Po(2) of 40 mmHg. We conclude that physiological decreases in Po(2) to levels typical for adrenal venous Po(2) under mild hypoxia inhibit steroidogenesis. These studies may have implications for oxygen therapy in critically ill patients with functional adrenal insufficiency, as well as for therapeutic options in patients with adrenal neoplasms.  相似文献   

8.
Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/-))) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.  相似文献   

9.
Recent human isolated muscle fiber studies suggest that phosphocreatine (PCr) and creatine (Cr) concentrations play a role in the regulation of mitochondrial respiration rate. To determine whether similar regulatory mechanisms are present in vivo, this study examined the relationship between skeletal muscle mitochondrial respiration rate and end-exercise PCr, Cr, PCr-to-Cr ratio (PCr/Cr), ADP, and pH by using (31)P-magnetic resonance spectroscopy in 16 men and women (36.9 +/- 4.6 yr). The initial PCr resynthesis rate and time constant (T(c)) were used as indicators of mitochondrial respiration after brief (10-12 s) and exhaustive (1-4 min) dynamic knee extension exercise performed in placebo and creatine-supplemented conditions. The results show that the initial PCr resynthesis rate has a strong relationship with end-exercise PCr, Cr, and PCr/Cr (r > 0.80, P < 0.001), a moderate relationship with end-exercise ADP (r = 0.77, P < 0.001), and no relationship with end-exercise pH (r = -0.14, P = 0.34). The PCr T(c) was not as strongly related to PCr, Cr, PCr/Cr, and ADP (r < 0.77, P < 0.001-0.18) and was significantly influenced by end-exercise pH (r = -0.43, P < 0.01). These findings suggest that end-exercise PCr and Cr should be taken into consideration when PCr recovery kinetics is used as an indicator of mitochondrial respiration and that the initial PCr resynthesis rate is a more reliable indicator of mitochondrial respiration compared with the PCr T(c).  相似文献   

10.
The value of the diffusion coefficient for oxygen in muscle is uncertain. The diffusion coefficient is important because it is a determinant of the extracellular oxygen tension at which the core of muscle fibers becomes anoxic (Po(2crit)). Anoxic cores in muscle fibers impair muscular function and may limit adaptation of muscle cells to increased load and/or activity. We used Hill's diffusion equations to determine Krogh's diffusion coefficient (Dalpha) for oxygen in single skeletal muscle fibers from Xenopus laevis at 20 degrees C (n = 6) and in myocardial trabeculae from the rat at 37 degrees C (n = 9). The trabeculae were dissected from the right ventricular myocardium of control (n = 4) and monocrotaline-treated, pulmonary hypertensive rats (n = 5). The cross-sectional area of the preparations, the maximum rate of oxygen consumption (Vo(2 max)), and Po(2crit) were determined. Dalpha increased in the following order: Xenopus muscle fibers Dalpha = 1.23 nM.mm(2).mmHg(-1).s(-1) (SD 0.12), control rat trabeculae Dalpha = 2.29 nM.mm(2).mmHg(-1).s(-1) (SD 0.24) (P = 0.0012 vs. Xenopus), and hypertrophied rat trabeculae Dalpha = 6.0 nM.mm(2).mmHg(-1).s(-1) (SD 2.8) (P = 0.039 vs. control rat trabeculae). Dalpha increased with extracellular space in the preparation (Spearman's rank correlation coefficient = 0.92, P < 0.001). The values for Dalpha indicate that Xenopus muscle fibers cannot reach Vo(2 max) in vivo because Po(2crit) can be higher than arterial Po(2) and that hypertrophied rat cardiomyocytes can become hypoxic at the maximum heart rate.  相似文献   

11.
The purpose of the present study was to visualize myoglobin-facilitated oxygen delivery to mitochondria at a critical mitochondrial oxygen supply in single isolated cardiomyocytes of rats. Using the autofluorescence of mitochondrial reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), the mitochondrial oxygen supply was imaged from approximately 1.4 microm inside the cell surface at a subcellular spatial resolution. Significant radial gradients of intracellular oxygenation were produced by superfusing the cell suspension with a mixed gas containing 2-4% oxygen while stimulating mitochondrial respiration with an uncoupler of oxidative phosphorylation. Augmentation of the NAD(P)H fluorescence started from the core of the cell (anoxic core) and progressively expanded toward the plasma membrane, as the extracellular Po(2) was lowered. Inactivation of cytosolic myoglobin by 5 mM NaNO(2) significantly enlarged such anoxic regions. Nitrite affected neither mitochondrial respiration in uncoupled cells nor the relationship between Po(2) and the NAD(P)H fluorescence in coupled cells. Thus we conclude that myoglobin significantly facilitates intracellular oxygen transport at a critical level of mitochondrial oxygen supply in single cardiomyocytes.  相似文献   

12.
The goal of the present study was to evaluate the effects of relatively short-term chronic intermittent hypoxia (CIH) on endothelial function of resistance vessels in the skeletal muscle and cerebral circulations. Sprague-Dawley rats were exposed to 14 days of CIH (10% fraction of inspired oxygen for 1 min at 4-min intervals, 12 h/day, n = 6). Control rats (n = 6) were housed under normoxic conditions. After 14 days, resistance arteries of the gracilis muscle (GA) and middle cerebral arteries (MCA) were isolated and cannulated with micropipettes, perfused and superfused with physiological salt solution, and equilibrated with 21% O2-5% CO2 in a heated chamber. The arteries were pressurized to 90 mmHg, and vessel diameters were measured via a video micrometer before and after exposure to ACh (10-7-10-4 M), sodium nitroprusside (10-6 M), and acute reduction of Po2 in the perfusate/superfusate (from 140 to 40 mmHg). ACh-induced dilations of GA and MCA from animals exposed to CIH were greatly attenuated, whereas responses to nitroprusside were similar to controls. Dilations of both GA and MCA in response to acute reductions in Po2 were virtually abolished in animals exposed to CIH compared with controls. These findings suggest that exposure to CIH reduces the bioavailability of nitric oxide in the cerebral and skeletal muscle circulations and severely blunts vasodilator responsiveness to acute hypoxia.  相似文献   

13.
Control of respiration in vascular smooth muscle was examined while the metabolic state of the tissue was manipulated. During KCl-induced contractures in the presence of 5 mM glucose, oxygen consumption increased by 10 nmol/per min g without any decrease in phosphocreatine (PCr) or ATP as determined by 31P-NMR indicating a control of respiration which does not involve changes in high-energy phosphates (e.g., ADP, phosphorylation potential). However, when aortae with resting tone in the absence of substrate were then provided with 5 mM 2-deoxyglucose as the sole substrate, oxygen consumption increased 7.4 nmol/min per g while PCr decreased by more than 50% (resulting in a 2-fold increase in the calculated free ADP) with no change in tension from resting tone. During a subsequent KCl induced contracture in the presence of 2-deoxyglucose, oxygen consumption increased an additional 7.2 nmol/min per g while PCr continued to decline. Therefore, at least two mechanisms of respiratory control may exist in sheep aorta, one dependent and the other independent of changes in high-energy phosphates.  相似文献   

14.
Critical oxygen pressure (P(C)) is used in respiratory physiology to measure the response to hypoxia. P(C) defines the partial pressure of oxygen (Po(2)) at which an oxygen regulator switches to a conformer. However, not all animals show such clear patterns in oxygen consumption rate (Mo2), and there are many methods for determining P(C). This study assesses two methods that determine regulatory ability and four that calculate P(C). A new method, the regulation index (RI), assigns to an animal a relative measure of regulatory ability by calculating the area under the Mo2 versus Po(2) curve that is greater than a linear trend. The six methods are applied to developmental Mo2 data of two amphibians, Pseudophryne bibronii and Crinia georgiana. The four methods used to determine P(C) produced similar results but failed to identify the increase in regulation on hatching in C. georgiana or the greater regulation in larval C. georgiana compared with P. bibronii. Of the two methods that evaluated regulation, only the RI satisfactorily represented the entire range of Po(2). The RI is advantageous because it has clearly defined limits and does not constrain data to fit any single pattern. The RI can be used in concert with P(C), which can be easily calculated during the RI analysis, to provide a clearer definition of the Mo2 response to environmental Po(2).  相似文献   

15.
Mitochondrial creatine kinase (Mi-CK) function in viable mitochondria from developing rat skeletal muscle was assessed both by polarographic measurements of creatine-induced respiration and 31P NMR spectroscopy measurements of phosphocreatine (PCr) synthesis. Creatine-induced respiration was observed in very young rats and increased by 50% to 35 days of age. PCr synthesis was present in 7 day old animals and increased by 300% reaching levels measured in 35 day and adult muscle. Unlike reports showing Mi-CK enzymatic activities but no mitochondrial function in several situations, a concomitant progression of enzymatic activity and mitochondrial function was evidenced during the developmental stages of skeletal muscle Mi-CK in altricious animals. These results correlated with the progressive pattern of muscle differentiation during development of motricity in such animals. The observation that Mi-CK is functional in skeletal muscle mitochondria very early after birth, strongly favors the notion that adaptations in skeletal muscle of Mi-CK knock-out mice occur early.  相似文献   

16.
It has been postulated previously that a direct activation of all oxidative phosphorylation complexes in parallel with the activation of ATP usage and substrate dehydrogenation (the so-called each-step activation) is the main mechanism responsible for adjusting the rate of ATP production by mitochondria to the current energy demand during rest-to-work transition in intact skeletal muscle in vivo. The present in silico study, using a computer model of oxidative phosphorylation developed previously, analyzes the impact of the each-step-activation mechanism on the distribution of control (defined within Metabolic Control Analysis) over the oxygen consumption flux among the components of the bioenergetic system in intact oxidative skeletal muscle at different energy demands. It is demonstrated that in the absence of each-step activation, the oxidative phosphorylation complexes take over from ATP usage most of the control over the respiration rate and oxidative ATP production at higher (but still physiological) energy demands. This leads to a saturation of oxidative phosphorylation, impossibility of a further acceleration of oxidative ATP synthesis, and dramatic drop in the phosphorylation potential. On the other hand, the each-step-activation mechanism allows maintenance of a high degree of the control exerted by ATP usage over the ATP turnover and oxygen consumption flux even at high energy demands and thus enables a potentially very large increase in ATP turnover. It is also shown that low oxygen concentration shifts the metabolic control from ATP usage to cytochrome oxidase and thus limits the oxidative ATP production. respiration rate; parallel activation; oxidative phosphorylation; metabolic control analysis; flux control coefficient; muscle contraction  相似文献   

17.
We have investigated the presence of diazoxide- and nicorandil-activated K+ channels in rat skeletal muscle. Activation of potassium transport in the rat skeletal muscle myoblast cell line L6 caused a stimulation of cellular oxygen consumption, implying a mitochondrial effect. Working with isolated rat skeletal muscle mitochondria, both potassium channel openers (KCOs) stimulate respiration, depolarize the mitochondrial inner membrane and lead to oxidation of the mitochondrial NAD-system in a strict potassium-dependent manner. This is a strong indication for KCO-mediated stimulation of potassium transport at the mitochondrial inner membrane. Moreover, the potassium-specific effects of both diazoxide and nicorandil on oxidative phosphorylation in skeletal muscle mitochondria were completely abolished by the antidiabetic sulfonylurea derivative glibenclamide, a well-known inhibitor of ATP-regulated potassium channels (K(ATP) channels). Since both diazoxide and nicorandil facilitated swelling of de-energised mitochondria in KSCN buffer at the same concentrations, our results implicate the presence of a mitochondrial ATP-regulated potassium channel (mitoK(ATP) channel) in rat skeletal muscle which can modulate mitochondrial oxidative phosphorylation.  相似文献   

18.
Glutathione serves as an important intracellular defence against reactive oxygen metabolites and has been shown to be depleted from a number of tissues upon oxidative stress. In the present study we have investigated the levels of total glutathione (reduced + oxidized) in skeletal muscle of the rat after prolonged ischema and reperfusion with and without treatment with hyperbaric oxygen (HBO) for the initial 45 minutes immediately following reperfusion. A tourniquet model for temporary, total ischemia was used, in which one hind leg was made ischemic for 3 or 4 hours. Muscle biopsies were taken after 5 hours of reperfusion. In postischemic muscle there was a significant decrease of total glutathione compared to control muscle, but in the 3-hour-ischema-groups the loss of total glutathione was less in HBO treated animals than in untreated. HBO treatment also preserved ATP and PCr and decreased edema formation in the postischemic muscle following 3 hours of ischemia and reperfusion when compared to untreated animals. However, after 4 hours of ischemia, HBO treatment failed to improve any of these parameters in the postischemic muscle. Thus, our results demonstrate that HBO treatment lessens the metabolic, ischemic derangements and improves recovery in postischemic muscle after 3 hours of ischemia followed by reperfusion.  相似文献   

19.
Adipose triglyceride lipase (ATGL) is a lipolytic enzyme that is highly specific for triglyceride hydrolysis. The ATGL-knockout mouse (ATGL(-/-)) accumulates lipid droplets in various tissues, including skeletal muscle, and has poor maximal running velocity and endurance capacity. In this study, we tested whether abnormal lipid accumulation in skeletal muscle impairs mitochondrial oxidative phosphorylation, and hence, explains the poor muscle performance of ATGL(-/-) mice. In vivo 1H magnetic resonance spectroscopy of the tibialis anterior of ATGL(-/-) mice revealed that its intramyocellular lipid pool is approximately sixfold higher than in WT controls (P = 0.0007). In skeletal muscle of ATGL(-/-) mice, glycogen content was decreased by 30% (P < 0.05). In vivo 31P magnetic resonance spectra of resting muscles showed that WT and ATGL(-/-) mice have a similar energy status: [PCr], [P(i)], PCr/ATP ratio, PCr/P(i) ratio, and intracellular pH. Electrostimulated muscles from WT and ATGL(-/-) mice showed the same PCr depletion and pH reduction. Moreover, the monoexponential fitting of the PCr recovery curve yielded similar PCr recovery times (τPCr; 54.1 ± 6.1 s for the ATGL(-/-) and 58.1 ± 5.8 s for the WT), which means that overall muscular mitochondrial oxidative capacity was comparable between the genotypes. Despite similar in vivo mitochondrial oxidative capacities, the electrostimulated muscles from ATGL(-/-) mice displayed significantly lower force production and increased muscle relaxation time than the WT. These findings suggest that mechanisms other than mitochondrial dysfunction cause the impaired muscle performance of ATGL(-/-) mice.  相似文献   

20.
We measured cerebral phosphocreatine (PCr), inorganic phosphate (Pi), ATP, and intracellular pH (pHi) with in vivo phosphorus nuclear magnetic resonance (NMR) during 10- to 15-min periods of reversible hypoxic hypoxia in 20 newborn lambs (1-11 days). There was a significant correlation between arterial O2 partial pressure (PaO2) and the PCr/Pi ratio or pHi; however, between PaO2 130-33 mmHg, metabolite changes were not significant. PCr/Pi and pHi decreased significantly when PaO2 was lowered below 33 and 28 mmHg, respectively. After recovery, metabolite ratios and pHi returned to base-line values within 5 min. During the early phases of hypoxia and recovery, there were large fluctuations in metabolites and pHi, indicating that mitochondrial reactions were not in a steady state. After several minutes of hypoxia or recovery, PCr/Pi and pHi stabilized, suggesting steady state kinetics for mitochondrial respiration. NMR is extremely sensitive to changes in mitochondrial oxygenation, and stable PCr/Pi and pHi indicate that O2 tension in cerebral mitochondria of the newborn lamb is constant between PaO2 of 30 and 140 mmHg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号