首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
The objective of this study was to assess the pharmacokinetics and bioavailability of 3beta-hydroxy-17-(1H-1,2,3-triazol-1-yl)androsta-5,16-diene (VN/87-1) in normal male mice and in SCID mice bearing human LNCaP tumor xenografts. VN/87-1 is a novel potent steroidal inhibitor of human testicular 17-alpha-hydroxylase/C(17,20)-lyase. The steroid also shows anti-androgenic activity and inhibits the growth of human prostate cancer cell lines (LNCaP) in vitro and in vivo. Male Balb/c mice were given a single oral, subcutaneous (s.c.) or intravenous (i.v.) bolus dose of VN/87-1 (25, 50 or 100 mg/kg). Male SCID mice bearing LNCaP tumor xenografts were injected with a single s.c. dose of VN/87-1 (50 mg/kg). The animals were sacrificed at various times up to 24 h after drug administration and blood was collected. The plasma samples were prepared and analyzed by a reversed phase HPLC system equipped with a diode array detector. A non-compartmental pharmacokinetic approach was used to evaluate the plasma level versus time data. Following i.v. administration of VN/87-1, the plasma levels declined exponentially with an elimination half-life of 1.2+/-0.03 h. The absolute bioavailability of the 50 mg/kg dose after oral or s.c. administration was 12.08+/-2 or 57.2+/-4.5%, respectively. VN/87-1 is a high clearance (5.0+/-1.3 l/h per kg) compound in mice and its volume of distribution was relatively large (6.5+/-1.2 l/kg). The pharmacokinetic parameters of VN/87-1 were not significantly altered in SCID mice bearing human LNCaP tumor xenografts. VN/87-1 is well absorbed from the subcutaneous site compared with absorption from the gastrointestinal tract and shows linear kinetics at doses up to 100 mg/kg.  相似文献   

2.
With the aim of enhancing the efficacy of chemotherapeutic agents, we investigated the antitumor actions and reversal effect on drug resistance of proanthocyanidin plus doxorubicin. The results showed that proanthocyanidin 12.5-200 mg/L significantly inhibited proliferation of K562, K562/DOX, SPC-A-1, and Lewis cells in vitro in a time- and concentration-dependent manner, as determined by microculture tetrazolium assay. A combination of proanthocyani din 12.5, or 25 mg/L and doxorubicin treatment synergistically inhibited cell proliferation with decreased IC50 values. Proanthocyanidin reverses drug resistance in doxorubicin-resistant K562/DOX cells, and IC50 values were decreased by 9.19 (3.64-23.19), 2.56 (1.48-.44), and 0.94 (0.81-1.09) mg/L, respectively, after 24 h treatment with doxorubicin 0.1-9.0 mg/L alone or in combination with proanthocyanidin 12.5 or 25 mg/L; the proanthocyanidin reversal fold was 3.6 and 9.8, respectively. Under confocal laser scanning microscope, the combination of proanthocyanidin 25 or 50 mg/L with doxorubicin 3 mg/L significantly increased the accumulation of intracellular doxorubicin, Ca2+, and Mg2+, and reduced the pH value and mitochondrial membrane potential in K562/DOX cells as compared with doxorubicin alone (p < 0.01). Additionally, the apoptosis rate was increased by 11.3% +/- 3.3%, 14.2% +/- 5.4%, and 23.8% +/- 2.8%, respectively, for doxorubicin 3 mg/L alone or with proanthocyanidin 12.5 or 25 mg/L, as compared with controls (3.0% +/- 1.4%), as demonstrated by flow cytometry. In vivo experiments demonstrated that i.p. administration of proanthocyanidin 10 mg/kg with doxorubicin 2 mg/kg had an inhibitory effect on the growth of transplantation tumor sarcoma 180 and hepatoma 22 in mice as compared with doxorubicin alone (p < 0.05). These results suggest that proanthocyanidin enhances doxorubicin-induced antitumor effect and reverses drug resistance, and its mechanism is attributed partially to the promotion of doxorubicin-induced apoptosis through an elevation of intracellular doxorubicin, and Ca2+, Mg2+ concentration, and a reduction of pH value and mitochondrial membrane potential.  相似文献   

3.
Serum and urinary concentrations of methimazole (MMI) were measured by high-performance liquid chromatography (HPLC) with an electrochemical detector (ECD) in 10 normal subjects and 43 hyperthyroid patients after intravenous and oral administration of the drug. The pharmacokinetic parameters of MMI were estimated in 5 normal subjects and 15 hyperthyroid patients according to a two-compartment model after intravenous injection of a 10 mg dose. The mean half-life of the distribution phase (T1/2 alpha) was 2.7 +/- 1.0 h (mean +/- SD) and 3.1 +/- 1.4 h and that of the slower-phase (T1/2 beta) was 20.7 +/- 9.6 h and 18.5 +/- 12.9 h in normal subjects and hyperthyroid patients, respectively. There were no significant differences between pharmacokinetic parameters of normal subjects and those of hyperthyroid patients. No correlations between free T4 index (FT4I) and pharmacokinetic parameters were observed. Maximum serum MMI concentrations (Cmax) (213 +/- 84 and 299 +/- 92 ng/ml) were attained 1.8 +/- 1.4 h and 2.3 +/- 0.8 h after a single dose of 10 mg in 5 normal subjects and in 15 hyperthyroid patients, respectively. In hyperthyroid patients the time taken to reach the peak concentration (Tmax) after a single dose of 10 mg was similar to that after a single 15 mg and 30 mg dose. The pharmacokinetic parameters, except Cmax and the area under the curve (AUC), were not affected by the administered dose and those, except Cmax, were not affected by the thyroid function. All urine was collected at intervals of 3 h for the first 12 h and then at 24 h and 48 h after intravenous and oral administration of MMI. In all subjects, MMI rapidly appeared in the urine and the rate of excretion was highest in the first 3 h. The cumulative urinary excretion of MMI was 5.5-8.5% of administered doses in normal subjects and hyperthyroid patients. These findings in the present study are compatible with the assumption that the extent of absorption of MMI is high, if not complete, and hyperthyroidism does not affect the kinetics of MMI, and that interindividual variation is observed in the time taken to reach the peak concentration after oral administration.  相似文献   

4.
Ethanol (EtOH) administration to rats for 4 wk markedly decreased Mg(2+) content in several tissues, including liver. Total cellular Mg(2+) accounted for 26.8 +/- 2.4 vs. 36.0 +/- 1.4 nmol Mg(2+)/mg protein in hepatocytes from EtOH-fed and control rats, respectively, and paralleled a 13% decrease in cellular ATP content. Stimulation of alpha(1)- or beta-adrenergic receptor or acute EtOH administration did not elicit an extrusion of Mg(2+) from liver cells of EtOH-fed rats while releasing 5% of total tissue Mg(2+) content from hepatocytes of control rats. Despite the 25% decrease in Mg(2+) content, hepatocytes from EtOH-fed rats did not accumulate Mg(2+) following stimulation of protein kinase C signaling pathway, whereas control hepatocytes accumulated approximately 2 nmol Mg(2+). mg protein(-1). 4 min(-1). Together, these data indicate that Mg(2+) homeostasis and transport are markedly impaired in liver cells after prolonged exposure to alcohol. The inability of liver cells, and possibly other tissues, to accumulate Mg(2+) can help explain the reduction in tissue Mg(2+) content following chronic alcohol consumption.  相似文献   

5.
A simple, rapid and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) assay for determination of tegaserod in human plasma using diazepam as internal standard (IS) was established. After adjustment to a basic pH with sodium hydroxide, plasma was extracted by ethyl acetate and separated by high performance liquid chromatography (HPLC) on a reversed-phase C18 column with a mobile phase of methanol: 5 mM ammonium acetate (75:25, v/v, adjusting the pH to 3.5 with glacial acetic acid). The quantification of target compounds was obtained by using multiple reaction monitoring (MRM) transitions; m/z 302.5, 173.2 and 285.4, 193.2 were measured in positive mode for tegaserod and internal standard (diazepam), respectively. The lower limit of quantification (LLOQ) was 0.05 ng/ml. The calibration curves were linear over the range 0.05-8.0 ng/ml (r=0.9996) for tegaserod. The mean absolute recovery of tegaserod was more than 85.56%. Intra- and inter-day variability values were less than 9.21% and 10.02%, respectively. The samples were stable for 8h under room temperature (25 degrees C, three freeze-thaw cycles in 30 days and for 30 days under -70 degrees C). After administration of a single dose of tegaserod maleate 4 mg, 6 mg and 12 mg, respectively, the area under the plasma concentration versus time curve from time 0 h to 12 h (AUC0-12) were (2.89+/-0.88), (5.32+/-1.21) and (9.38+/-3.42) ng h/ml, respectively; peak plasma concentration (Cmax) were (1.25+/-0.53), (2.21+/-0.52) and (4.34+/-1.66) ng/ml, respectively; apparent volume of distribution (Vd/F) were (6630.5+/-2057.8), (7615.2+/-2242.8) and (7163.7+/-2057.2) l, respectively; clearance rate (CL/F) were (1851.4+/-496.9), (1596.2+/-378.5) and (1894.2+/-459.3) l/h, respectively; time to Cmax (Tmax) were (1.00+/-0.21), (1.05+/-0.28) and (1.04+/-0.16) h, respectively; and elimination half-life (t1/2) were (3.11+/-0.78), (3.93+/-0.92) and (3.47+/-0.53) h, respectively; MRT were (3.74+/-0.85), (4.04+/-0.56) and (3.28+/-0.66) h, respectively. The essential pharmacokinetic parameters after oral multiple doses (6mg, b.i.d) were as follows: Cssmax, (2.72+/-0.61) ng/ml; Tmax, (1.10+/-0.25) h; Cssmin, (0.085+/-0.01) ng/ml; Cav, (0.54+/-0.12) ng/ml; DF, (4.84+/-0.86); AUCss, (6.53+/-1.5) ngh/ml. This developed and validated assay method had been successfully applied to a pharmacokinetic study after oral administration of tegaserod maleate in healthy Chinese volunteers at a single dose of 4 mg, 6 mg and 12 mg, respectively. The pharmacokinetic parameters can provide some information for clinical medication.  相似文献   

6.
Kinetic compartmental analysis of carnitine metabolism in the dog   总被引:2,自引:0,他引:2  
This study was undertaken to quantitate the dynamic parameters of carnitine metabolism in the dog. Six mongrel dogs were given intravenous injections of L-[methyl-3H]carnitine and the specific radioactivity of carnitine was followed in plasma and urine for 19-28 days. The data were analyzed by kinetic compartmental analysis. A three-compartment, open-system model [(a) extracellular fluid, (b) cardiac and skeletal muscle, (c) other tissues, particularly liver and kidney] was adopted and kinetic parameters (carnitine flux, pool sizes, kinetic constants) were derived. In four of six dogs the size of the muscle carnitine pool obtained by kinetic compartmental analysis agreed (+/- 5%) with estimates based on measurement of carnitine concentrations in different muscles. In three of six dogs carnitine excretion rates derived from kinetic compartmental analysis agreed (+/- 9%) with experimentally measured values, but in three dogs the rates by kinetic compartmental analysis were significantly higher than the corresponding rates measured directly. Appropriate chromatographic analyses revealed no radioactive metabolites in muscle or urine of any of the dogs. Turnover times for carnitine were (mean +/- SEM): 0.44 +/- 0.05 h for extracellular fluid, 232 +/- 22 h for muscle, and 7.9 +/- 1.1 h for other tissues. The estimated flux of carnitine in muscle was 210 pmol/min/g of tissue. Whole-body turnover time for carnitine was 62.9 +/- 5.6 days (mean +/- SEM). Estimated carnitine biosynthesis ranged from 2.9 to 28 mumol/kg body wt/day. Results of this study indicate that kinetic compartmental analysis may be applicable to study of human carnitine metabolism.  相似文献   

7.
Rat 9L gliosarcoma cells infiltrating the normal brain have been shown previously to accumulate only approximately 30% as much boron as the intact tumor after administration of the boronated amino acid p-boronophenylalanine (BPA). Long-term i.v. infusions of BPA were shown previously to increase the boron content of these infiltrating tumor cells significantly. Experiments to determine whether this improved BPA distribution into infiltrating tumor cells after a long-term i.v. infusion improves tumor control after BNCT in this brain tumor model and whether it has any deleterious effects in the response of the rat spinal cord to BNCT are the subjects of the present report. BPA was administered in a fructose solution at a dose of 650 mg BPA/kg by single i.p. injection or by i.v. infusion for 2 h or 6 h, at 330 mg BPA/kg h(-1). At 1 h after the end of either the 2-h or the 6-h infusion, the CNS:blood (10)B partition ratio was 0.9:1. At 3 h after the single i.p. injection, the ratio was 0.6:1. After spinal cord irradiations, the ED(50) for myeloparesis was 14.7 +/- 0.4 Gy after i.p. administration of BPA and 12.9 +/- 0.3 Gy in rats irradiated after a 6-h i.v. infusion of BPA; these values were significantly different (P < 0.001). After irradiation with 100 kVp X rays, the ED(50) was 18.6 +/- 0.1 Gy. The boron compound biological effectiveness (CBE) factors calculated for the boron neutron capture dose component were 1.2 +/- 0.1 for the i.p. BPA administration protocol and 1.5 +/- 0.1 after irradiation using the 6-h i.v. BPA infusion protocol (P < 0.05). In the rat 9L gliosarcoma brain tumor model, the blood boron concentrations at 1 h after the end of the 2-h infusion (330 mg BPA/kg h(-1); n = 15) or after the 6-h infusion (190 mg BPA/kg h(-1); n = 13) were 18.9 +/- 2.2 microg 10B/g and 20.7 +/- 1.8 microg 10B/g, respectively. The irradiation times were adjusted individually, based on the preirradiation blood sample, to deliver a predicted 50% tumor control dose of 8.2 Gy ( approximately 30 photon-equivalent Gy) to all tumors. In the present study, the long-term survival was approximately 50% and was not significantly different between the 2-h and the 6-h infusion groups. The mode of BPA administration and the time between administration and irradiation influence the 10B partition ratio between the CNS and the blood, which in turn influences the measured CBE factor. These findings underline the need for clinical biodistribution studies to be carried out to establish 10B partition ratios as a key component in the evaluation of modified administration protocols involving BPA.  相似文献   

8.
Absorption and enterohepatic circulation of baicalin in rats   总被引:8,自引:0,他引:8  
Xing J  Chen X  Zhong D 《Life sciences》2005,78(2):140-146
Pharmacokinetics of baicalin, in form of its parent drug (BG) and conjugated metabolites (BGM), were studied following intravenous and oral administration of baicalin to intact rats. The enterohepatic circulation of BG and BGM was also assessed in a linked-rat model. Multiple plasma and urine samples were collected, and concentrations of BG and BGM were determined using a liquid chromatography/tandem mass spectrometry method. The concentration of BGM was assayed in the form of baicalein after treatment with beta-glucuronidase/sulfatase. After i.v. administration, plasma concentration of BG rapidly declined with the elimination half-life (T1/2) of 0.1 till 4 h post dose, followed by slight increase from 4-8 h in plasma concentrations after drug administration. These plasma concentrations resulted in a significant prolongation of the terminal elimination half-life of BG (T1/2 TER, 9.7 h). BG also displayed slight increase in plasma concentrations (12-24 h) after oral administration, with T1/2 TER of 12.1 h. Based on the AUC of BG and BGM, the absolute bioavailability of baicalin was 2.2+/-0.2% and 27.8+/-5.6%, respectively. The exposure of baicalin to the systemic circulation was approximately 118-fold lower than that of BGM after oral administration (AUC0-t, 4.43 versus 523.97 nmol.h/mL). The high extent of glucuronidation suggested the possible presence of enterohepatic circulation, which was confirmed in the linked-rat model since plasma concentrations of BG and BGM were observed in bile-recipient rats at 4 to 36 h. The extent of enterohepatic circulation after intravenous administration of baicalin was 4.8% and 13.3% for BG and BGM, respectively. It was determined that 18.7% and 19.3% of the administered baicalin were subjected to enterohepatic circulation for BG and BGM, respectively, after oral administration. These results confirm that BG undergoes extensive first-pass glucuronidation and that enterohepatic circulation contributes significantly to the exposure of BG and BGM in rats.  相似文献   

9.
Efficacy of drugs reduced proximal reabsorption was compared in experiments with female Wistar rats. Urine flow rate for the 1st h of experiment was enhanced after polyethylene glycol-400 (PEG) and 6% Na2SO4 infusion by over 30-fold, exenatide--40-fold, glycerol--11-fold as compared with the control. The maximal values of Na+ excretion were observed during Na2SO4 and exenatide administration (280 +/- 31 micromol/h vs. 3.2 +/- 0.6 Imol/h/100 g bw). The highest K+ excretion was revealed in experiments with glycerol administration (41 +/- 5 micromol/h vs. 7 +/- 2 micromol/h/100 g bw), Mg2+ --after exenatide injection (5.3 +/- 1.3 micromol/h vs. 0.16 +/- 0.03 micromol/ h/100 g bw). Diuretic effects were additive after combined administration of maximal doses of exenatide and PEG which suggests a different mechanism of action of solutes filtrated (PEG) to the proximal nephron segment and generated due to Na+/HW-exchange inhibition (exenatide). Osmotic diuretics differ by potency, mechanism of diuretic action and selectivity of ion excretion).  相似文献   

10.
Nickel absorption and kinetics in human volunteers   总被引:3,自引:0,他引:3  
Mathematical modeling of the kinetics of nickel absorption, distribution, and elimination was performed in healthy human volunteers who ingested NiSO4 drinking water (Experiment 1) or added to food (Experiment 2). Nickel was analyzed by electrothermal atomic absorption spectrophotometry in serum, urine, and feces collected during 2 days before and 4 days after a specified NiSO4 dose (12 micrograms of nickel/kg, n = 4; 18 micrograms of nickel/kg, n = 4; or 50 micrograms of nickel/kg, n = 1). In Experiment 1, each of the subjects fasted 12 hr before and 3 hr after drinking one of the specified NiSO4 doses dissolved in water; in Experiment 2, the respective subjects fasted 12 hr before consuming a standard American breakfast that contained the identical dose of NiSO4 added to scrambled eggs. Kinetic analyses, using a compartmental model, provided excellent goodness-of-fit for paired data sets from all subjects. Absorbed nickel averaged 27 +/- 17% (mean +/- SD) of the dose ingested in water vs 0.7 +/- 0.4% of the same dose ingested in food (a 40-fold difference); rate constants for nickel absorption, transfer, and elimination were not significantly influenced by the oral vehicle. The elimination half-time for absorbed nickel averaged 28 +/- 9 hr. Renal clearance of nickel averaged 8.3 +/- 2.0 ml/min/1.73 m2 in Experiment 1 and 5.8 +/- 4.3 ml/min/1.73 m2 in Experiment 2. This study confirms that dietary constituents profoundly reduce the bioavailability of Ni2+ for alimentary absorption; approximately one-quarter of nickel ingested in drinking water after an over-night fast is absorbed from the human intestine and excreted in urine, compared with only 1% of nickel ingested in food. The compartmental model and kinetic parameters provided by this study will reduce the uncertainty of toxicologic risk assessments of human exposures to nickel in drinking water and food.  相似文献   

11.
Rosmarinic acid (RA) is contained in various Lamiaceae herbs used commonly as culinary herbs. Although RA has various potent physiological actions, little is known on its bioavailability. We therefore investigated the absorption and metabolism of orally administered RA in rats. After being deprived of food for 12 h, RA (50 mg/kg body weight) or deionized water was administered orally to rats. Blood samples were collected from a cannula inserted in the femoral artery before and at designated time intervals after administration of RA. Urine excreted within 0 to 8 h and 8 to 18 h post-administration was also collected. RA and its related metabolites in plasma and urine were measured by LC-MS after treatment with sulfatase and/or beta-glucuronidase. RA, mono-methylated RA (methyl-RA) and m-coumaric acid (COA) were detected in plasma, with peak concentrations being reached at 0.5, 1 and 8 h after RA administration, respectively. RA, methyl-RA, caffeic acid (CAA), ferulic acid (FA) and COA were detected in urine after RA administration. These components in plasma and urine were present predominantly as conjugated forms such as glucuronide or sulfate. The percentage of the original oral dose of RA excreted in the urine within 18 h of administration as free and conjugated forms was 0.44 +/- 0.21% for RA, 1.60 +/- 0.74% for methyl-RA, 1.06 +/- 0.35% for CAA, 1.70 +/- 0.45% for FA and 0.67 +/- 0.29% for COA. Approximately 83% of the total amount of these metabolites was excreted in the period 8 to 18 h after RA administration. These results suggest that RA was absorbed and metabolized as conjugated and/or methylated forms, and that the majority of RA absorbed was degraded into conjugated and/or methylated forms of CAA, FA and COA before being excreted gradually in the urine.  相似文献   

12.
Magnesium probably protects brain tissue against the effects of cerebral ischemia, brain injury and stroke through its actions as a calcium antagonist and inhibitor of excitatory amino acids. The effects of magnesium sulfate on cerebrovascular permeability to a dye, Evans blue, were studied during insulin-induced hypoglycemia with hypothermia in rats. Hypoglycemia was induced by an intramuscular injection of insulin. After giving insulin, each animal received MgSO4 (270 mg/kg) ip, followed by a 27 mg/kg dose every 20 min for 2.5 h. Plasma glucose and Mg2+ levels of animals were measured. Magnesium concentrations increased in the serum following MgSO4 administration (6.05+/-0.57 vs. 2.58+/-0.14 mg/dL in the Mg2+ group, and 7.14+/-0.42 vs. 2.78+/-0.06 mg/dL in the insulin + Mg2+ group, P < 0.01). Plasma glucose levels decreased following hypoglycemia (4+/-0.66 vs. 118+/-2.23 mg/dL in the insulin group, and 7+/-1.59 vs. 118+/-4.84 mg/dL in the insulin + Mg2+ group, P < 0.01). Blood-brain barrier permeability to Evans blue considerably increased in hypoglycemic rats (P < 0.01). In contrast, blood-brain barrier permeability to Evans blue was significantly reduced in treatment of hypoglycemic rats with MgSO4 (P < 0.01). These results indicate that Mg2+ greatly reduced the passage of exogenous vascular tracer bound to albumin into the brain during hypoglycemia with hypothermia. Mg2+ could have protective effects on blood-brain barrier permeability against insulin-induced hypoglycemia.  相似文献   

13.
Magnesium homeostasis during high-intensity anaerobic exercise in men   总被引:2,自引:0,他引:2  
This study was conducted to determine whether short-term, high-intensity anaerobic exercise alters Mg homeostasis. Thirteen men performed intermittent bouts of treadmill running at 90% of their predetermined maximum O2 uptake until exhaustion on one occasion during a week in which all men were consuming a standard diet (115 mg Mg/1,000 kcal). Plasma and erythrocyte Mg concentrations and peripheral blood mononuclear cell Mg content were measured before and after the exercise. Complete 24-h urine collections were obtained on control days, on the day of exercise, and on the day after exercise. Exercise induced a transient but significant decrease in plasma Mg content (-6.8%; P less than 0.01); over 85% of the loss could be accounted for by a shift to the erythrocytes. Significant increases in urinary excretion of Mg were observed on the day of exercise (131.5 +/- 6.8 mg/day) compared with control days (108 +/- 6.6 mg/day), with the percent increase correlating with postexercise blood lactate concentration (r = 0.68; P less than 0.01) and oxygen consumption during recovery (r = 0.84; P less than 0.001). The data indicate that high-intensity anaerobic exercise induces intercompartmental Mg shifts in blood that return to preexercise values within 2 h and urinary losses on the day of exercise that return to base line the day after exercise. It is postulated that the exercise-induced increase in Mg excretion may depend on the intensity of the exercise, and the relative contribution of anaerobic metabolism to the total energy expended during exercise.  相似文献   

14.
ABSTRACT: BACKGROUND: Dehorning is a common practice involving calves on dairy operations in the United States. However, less than 20% of producers report using analgesics or anesthetics during dehorning. Administration of a systemic analgesic drug at the time of dehorning may be attractive to dairy producers since cornual nerve blocks require 10 -- 15 min to take effect and only provide pain relief for a few hours. The primary objectives of this trial were to (1) describe the compartmental pharmacokinetics of meloxicam in calves after IV administration at 0.5 mg/kg and (2) to determine the effect of meloxicam (n = 6) or placebo (n = 6) treatment on serum cortisol response, plasma substance P (SP) concentrations, heart rate (HR), activity and weight gain in calves after scoop dehorning and thermocautery without local anesthesia. RESULTS: Plasma meloxicam concentrations were detectable for 50 h post-administration and fit a 2-compartment model with a rapid distribution phase (mean T1/2alpha = 0.22 +/- 0.087 h) and a slower elimination phase (mean T1/2beta = 21.86 +/- 3.03 h). Dehorning caused a significant increase in serum cortisol concentrations and HR (P < 0.05). HR was significantly lower in the meloxicam-treated calves compared with placebo-treated calves at 8 h (P = 0.039) and 10 h (P = 0.044) after dehorning. Mean plasma SP concentrations were lower in meloxicam treated calves (71.36 +/- 20.84 pg/mL) compared with control calves (114.70 +/- 20.84 pg/mL) (P = 0.038). Furthermore, the change in plasma SP from baseline was inversely proportional to corresponding plasma meloxicam concentrations (P = 0.008). The effect of dehorning on laying behavior was less significant in meloxicam-treated calves (p = 0.40) compared to the placebo-treated calves (P < 0.01). Calves receiving meloxicam prior to dehorning gained on average 1.05 +/- 0.13 kg bodyweight/day over 10 days post-dehorning compared with 0.40 +/- 0.25 kg bodyweight/day in the placebo-treated calves (p = 0.042). CONCLUSIONS: To our knowledge, this is the first published report examining the effects of meloxicam without local anesthesia on SP, activity and performance of calves post-dehorning. These findings suggest that administration of meloxicam alone immediately prior to dehorning does not mitigate signs of acute distress but may have long term physiological, behavior and performance effects.  相似文献   

15.
Recent studies have identified a 24 h rhythm in the expression and function of PEPT1 in rats, with significantly higher levels during the nighttime than daytime. Similarly, temporal variations have been described in glomerular filtration rate and renal blood flow, both being maximal during the activity phase and minimal during the rest phase in laboratory rodents. The aim of this study was to assess the hypothesis that the absorption of the first-generation cephalosporin antibiotic cephalexin by dogs would be less and the elimination would be slower after evening (rest span) compared to morning (activity span) administration, and whether such administration-time changes could impair the medication's predicted clinical efficacy. Six (3 male, 3 female; age 4.83+/-3.12 years) healthy beagle dogs were studied. Each dog received a single dose of 25 mg/kg of cephalexin monohydrate per os at 10:00 and 22:00 h, with a two-week interval of time between the two clock-time experiments. Plasma cephalexin concentrations were determined by microbiological assay. Cephalexin peak plasma concentration was significantly reduced to almost 77% of its value after the evening compared to morning (14.52+/-2.7 vs. 18.77+/-2.8 microg/mL) administration. The elimination half-life was prolonged 1.5-fold after the 22:00 h compared to the 10:00 h administration (2.69+/-0.9 vs. 1.79+/-0.2 h). The area under the curve and time to reach peak plasma concentration did not show significant administration-time differences. The duration of time that cephalexin concentrations remained above the minimal inhibitory concentrations (MIC) for staphylococci susceptiblity (MIC=0.5 microg/mL) was>70% of each of the 12 h dosing intervals (i.e., 10:00 and 22:00 h). It can be concluded that cephalexin pharmacokinetics vary with time of day administration. The findings of this acute single-dose study require confirmation by future steady-state, multiple-dose studies. If such studies are confirmatory, no administration-time dose adjustment is required to ensure drug efficacy in dogs receiving an oral suspension of cephalexin in a dosage of 25 mg/kg at 12 h intervals.  相似文献   

16.
P-Cresol, a partially lipophilic and protein-bound compound is related to several biochemical alterations in uremia. Because p-cresol kinetics have never been studied, we investigated its kinetic behavior in rats. Results were compared with those obtained with creatinine, a water soluble, non-protein-bound uremic retention solute, which is currently used as a marker of uremic retention. Healthy rats were divided into 3 groups with comparable body weight: (1) a control group (n=6); (2) a group (n=7) which received an intravenous bolus of 3 mg p-cresol; and (3) a group (n=5) which received an intravenous bolus of 18 mg creatinine. Blood samples were collected at 0, 5, 30, 60, 120, 180 and 240 minutes after administration for the determination of p-cresol and creatinine. Urine was collected at 1-hour intervals. p-Cresol concentrations were assessed by HPLC. Pharmacokinetic parameters of p-cresol and creatinine were calculated from the serum concentration-time curves using non-compartmental analysis. Each compound showed a concentration at time point 5 min (p-cresol: 6.7 +/- 1.4 mg/L and creatinine: 141 +/- 12 mg/L) which was comparable with values observed in uremic patients; these concentrations decreased gradually towards min 240 (p-cresol: 0.6 +/- 0.3 mg/L and creatinine: 4 +/- 2 mg/L, p<0.05 vs. 5 min in both cases). No p-cresol was found in the serum of control rats and these rats showed no changes in serum concentration of creatinine. Urinary excretions were strikingly different (p-cresol: 23 +/- 10% and creatinine: 95 +/- 25% of the administered dose, p<0.05). The half-life of p-cresol was twice as long as that of creatinine (1.5 +/- 0.8 vs. 0.8 +/- 0.1 h, p<0.05). Total clearance (CLt) was much higher for p-cresol than for creatinine (23.2 +/- 4.5 vs. 8.1 +/- 0.4 mL/min/kg, p<0.01); renal clearance (CLr), however, was substantially lower for p-cresol (4.8 +/- 2.0 vs. 8.2 +/- 1.9 mL/min/kg, p<0.05). Whereas CLt and CLr were similar for creatinine, CLt of p-cresol largely exceeded its CLr (p<0.05). The volume of distribution (Vd) was also much larger for p-cresol than for creatinine (2.9 +/- 1.4 vs. 0.6 +/- 0.1 L/kg, p<0.01). After injection of p-cresol, an additional chromatographic peak appeared in serum and in urine samples. Although at min 240 serum concentration of p-cresol had decreased to 10% of the peak value, only 23% of the administered amount was excreted in the urine and the CLr was +/- 50% lower compared to that of creatinine. Non-renal clearance and Vd of p-cresol were, however, substantially larger. These data may be of value to explain the different behavior of p-cresol in renal failure and dialysis, compared to creatinine.  相似文献   

17.
The kinetics of endogenously labeled low density lipoprotein (LDL) triglycerides (TG) and apoprotein B (apoB) have been studied in four normal and in four hyperlipemic subjects using double tracers. Analysis of the data suggests that most LDL triglycerides turn over about 10 times faster than apoB (0.003/min vs. 0.0003/min) and that about 10% of the LDL particles contain most of the TG found with LDL. It is not possible to determine from the analysis whether each new LDL particle arrives with the excess TG or whether only a subpopulation of particles contains most of the TG. The kinetic analysis further suggests that triglyceride-rich LDL particles do not exchange with an extraplasma compartment as most LDL particles do, and thus, they behave more like very low density lipoprotein particles. A compartmental model accounting for both the LDL-TG and LDL-apoB kinetics is proposed.  相似文献   

18.
The possible genotoxic effect of paracetamol (PC) was studied in a group of 11 healthy volunteers. PC was administered in the form of tablets 3 x 1000 mg in the course of 8 h. Blood samples and buccal mucosa cells were taken 0, 24, 72 and 168 h after the first administration of the drug. Each blood sample was used for the termination of the unscheduled DNA synthesis (UDS) in peripheral lymphocytes and ascorbemia in plasma. Buccal mucosa cells were analysed for micronuclei. After PC administration the level of UDS induced by MNNG was decreased to T/C = 4.11 +/- 0.56 after 24 h vs. T/C = 5.02 +/- 0.47 (p less than 0.01) at 0 h. The frequency of micronucleated cells in the buccal mucosa was increased after 72 h to 0.38 +/- 0.07% vs. 0.19 +/- 0.06% (p less than 0.01) before PC administration. If PC was administered simultaneously with ascorbic acid (AA), also in a dose of 3 X 1000 mg, a decreased level of UDS was observed after 24, 72 and 168 h and the increased number of micronuclei was qualitatively the same as the PC alone: 0.38 +/- 0.09% after 72 h vs. 0.20 +/- 0.05% at 0 h AA did not decrease the genotoxic effect of PC, but prolonged the influence of PC on UDS.  相似文献   

19.
A pipe for administration of inhaled cocaine and its pyrolytic products in laboratory animals was developed and tested. In-vitro trials showed 30.0 +/- 5.2% (mean +/- SE) recovery of cocaine in solvent. Five non-pregnant ewes were instrumented with tracheal T-tubes and vascular catheters. After surgical recovery, ewes received three doses of cocaine (free base) in a randomized fashion; 2 mg/kg and 4 mg/kg both by inhalation, and 2 mg/kg intravenously. Arterial blood samples were collected and assayed for cocaine and its major metabolites by high performance liquid chromatography. Blood pressure and heart rate were continuously recorded. Cocaine administered by inhalation was eliminated with a half-life of 1.6 +/- 0.5 min (mean +/- SE) compared to 3.4 +/- 0.9 following intravenous administration (p less than 0.03). Likewise, clearance values were greater following inhalation, 5532 +/- 1756 ml/min/kg, than following intravenous administration, 163 +/- 20.6 ml/min/kg (p less than 0.04). Both routes of administration led to significant elevations in blood pressure, 7.5% increase after smoking vs 20% increase after intravenous administration. No correlation was found between inhalational dose of cocaine and peak plasma cocaine concentration.  相似文献   

20.
A Nonaka  T Manabe  T Tobe 《Life sciences》1990,47(21):1933-1939
Oxygen-derived free radicals have been implicated as mediators of cellular injury in several model systems. In order to clarify the role of oxygen radicals in endotoxemia, we measured the serial lipid peroxide changes resulting from systemic radical reactions using a newly developed colormetric method. To determine the effect of a free radical scavenger on mortality in endotoxemia, a new synthetic scavenger, 2-Octadecylascorbic acid (CV-3611), which overcome the detrimental properties (circulation half-life and cell penetration) of native SOD, was used in the model of mouse endotoxemia induced by the i.p. administration of E-coli endotoxin (10 mg/kg). Serial LPO (Lipid Peroxide) changes revealed significant elevations from the basal level of 4.52 +/- 0.79 nmol/ml to 10.5 +/- 2.04 nmol/ml at 2h (P less than 0.05), 12.0 +/- 2.44 nmol/ml at 8h (P less than 0.05), 32.8 +/- 12.5 nmol/ml at 12h (P less than 0.05) and 13.6 +/- 2.40 nmol/ml at 24h (P less than 0.05) following i.p. administration of E-coli. The circulation half life of CV-3611 was checked by a reversed-phase HPLC after 10 mg/kg s.c. administration. The level of CV-3611 reached peak levels of 0.54 +/- 0.10 micrograms/ml at 1h and 0.52 +/- 0.20 micrograms/ml at 2h then gradually decreased to the level of 0.04 +/- 0.004 micrograms/ml at 6h and to a non-detectable level at 24h after s.c. administration. Increased survival was seen at 2 days (P less than 0.001) after E-coli endotoxin administration in the CV-3611 treated group compared to the control group. These results suggest that oxygen derived free radicals contribute to mortality in mouse endotoxemia and that antioxidants such as CV-3611 may provide a new therapeutic avenue by improving survival of patients with gram-negative bacterial sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号