首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep walking. We identified a new genetic locus for familial sleep-related focal epilepsy on chromosome 8p12.3-8q12.3. By sequencing the positional candidate neuronal cholinergic receptor alpha 2 subunit gene (CHRNA2), we detected a heterozygous missense mutation, I279N, in the first transmembrane domain that is crucial for receptor function. Whole-cell recordings of transiently transfected HEK293 cells expressing either the mutant or the wild-type receptor showed that the new CHRNA2 mutation markedly increases the receptor sensitivity to acetylcholine, therefore indicating that the nicotinic alpha 2 subunit alteration is the underlying cause. CHRNA2 is the third neuronal cholinergic receptor gene to be associated with familial sleep-related epilepsies. Compared with the CHRNA4 and CHRNB2 mutations reported elsewhere, CHRNA2 mutations cause a more complex and finalized ictal behavior.  相似文献   

2.
Autosomal dominant nocturnal frontal-lobe epilepsy (ADNFLE) is a recently identified partial epilepsy in which two different mutations have been described in the alpha4 subunit of the neuronal nicotinic acetylcholine receptor (CHRNA4). An additional seven families are presented in which ADNFLE is unlinked to the CHRNA4 region on chromosome 20q13.2. Seven additional sporadic cases showed no evidence of defective CHRNA4. One of the families showed evidence of linkage to 15q24, close to the CHRNA3/CHRNA5/CHRNB4 cluster (maximum LOD score of 3.01 with D15S152). Recombination between ADNFLE and CHRNA4, linkage to 15q24 in one family, and exclusion from 15q24 and 20q13.2 in others demonstrate genetic heterogeneity with at least three different genes for ADNFLE. The CHRNA4 gene and the two known CHRNA4 mutations are responsible for only a minority of ADNFLE. Although the ADNFLE phenotype is clinically homogeneous, there appear to be a variety of molecular defects responsible for this disorder, which will provide a challenge to the understanding of the basic mechanism of epileptogenesis.  相似文献   

3.
The past decade saw remarkable advances in defining the molecular and genetic basis of the congenital myasthenic syndromes. These advances would not have been possible without antecedent clinical observations, electrophysiologic analysis, and careful morphologic studies that pointed to candidate genes or proteins. For example, a kinetic abnormality of the acetylcholine receptor (AChR) detected at the single channel level pointed to a kinetic mutation in an AChR subunit; endplate AChR deficiency suggested mutations residing in an AChR subunit or in rapsyn; absence of acetylcholinesterase (AChE) from the endplate predicted mutations in the catalytic or collagen-tailed subunit of this enzyme; and a history of abrupt episodes of apnea associated with a stimulation dependent decrease of endplate potentials and currents implicated proteins concerned with ACh resynthesis or vesicular filling. Discovery of mutations in endplate-specific proteins also prompted expression studies that afforded proof of pathogenicity, provided clues for rational therapy, lead to precise structure function correlations, and highlighted functionally significant residues or molecular domains that previous systematic mutagenesis studies had failed to detect. An overview of the spectrum of the congenital myasthenic syndromes suggests that most are caused by mutations in AChR subunits, and particularly in the ɛ subunit. Future studies will likely uncover new types of CMS that reside in molecules governing quantal release, organization of the synaptic basal lamina, and expression and aggregation of AChR on the postsynaptic junctional folds.  相似文献   

4.
Molecular basis of an inherited epilepsy   总被引:35,自引:0,他引:35  
Lossin C  Wang DW  Rhodes TH  Vanoye CG  George AL 《Neuron》2002,34(6):877-884
Epilepsy is a common neurological condition that reflects neuronal hyperexcitability arising from largely unknown cellular and molecular mechanisms. In generalized epilepsy with febrile seizures plus, an autosomal dominant epilepsy syndrome, mutations in three genes coding for voltage-gated sodium channel alpha or beta1 subunits (SCN1A, SCN2A, SCN1B) and one GABA receptor subunit gene (GABRG2) have been identified. Here, we characterize the functional effects of three mutations in the human neuronal sodium channel alpha subunit SCN1A by heterologous expression with its known accessory subunits, beta1 and beta2, in cultured mammalian cells. SCN1A mutations alter channel inactivation, resulting in persistent inward sodium current. This gain-of-function abnormality will likely enhance excitability of neuronal membranes by causing prolonged membrane depolarization, a plausible underlying biophysical mechanism responsible for this inherited human epilepsy.  相似文献   

5.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) can be caused by mutations in the neuronal nicotinic acetylcholine receptor (nAChR) subunit genes CHRNA4 and CHRNB2. Recently, a point mutation (α2-I279N) associated with sleep-related epilepsy has been described in a third nAChR gene, CHRNA2. We demonstrate here that α2-I279N can be co-expressed with the major structural subunit CHRNB2. α2-I279N causes a marked gain-of-function effect and displays a distinct biopharmacological profile, including markedly reduced inhibition by carbamazepine and increased nicotine sensitivity.  相似文献   

6.
Resistance to insecticides by modification of their molecular targets is a serious problem in chemical control of many arthropod pests. Neonicotinoids target the nicotinic acetylcholine receptor (nAChR) of arthropods. The spectrum of possible resistance-conferring mutations of this receptor is poorly understood. Prediction of resistance is complicated by the existence of multiple genes encoding the different subunits of this essential component of neurotransmission. We focused on the cluster of three Drosophila melanogaster nAChR subunit genes at cytological region 96A. EMS mutagenesis and selection for resistance to nitenpyram was performed on hybrids carrying a deficiency for this chromosomal region. Two complementation groups were defined for the four strains isolated. Molecular characterisation of the mutations found lesions in two nAChR subunit genes, Dalpha1 (encoding an alpha-type subunit) and Dbeta2 (beta-type). Mutations conferring resistance in beta-type receptors have not previously been reported, but we found several lesions in the Dbeta2 sequence, including locations distant from the predicted neonicotinoid-binding site. This study illustrates that mutations in a single-receptor subunit can confer nitenpyram resistance. Moreover, some of the mutations may protect the insect against nitenpyram by interfering with subunit assembly or channel activation, rather than affecting binding affinities of neonicotinoids to the channel.  相似文献   

7.
Escobar syndrome is a form of arthrogryposis multiplex congenita and features joint contractures, pterygia, and respiratory distress. Similar findings occur in newborns exposed to nicotinergic acetylcholine receptor (AChR) antibodies from myasthenic mothers. We performed linkage studies in families with Escobar syndrome and identified eight mutations within the gamma -subunit gene (CHRNG) of the AChR. Our functional studies show that gamma -subunit mutations prevent the correct localization of the fetal AChR in human embryonic kidney-cell membranes and that the expression pattern in prenatal mice corresponds to the human clinical phenotype. AChRs have five subunits. Two alpha, one beta, and one delta subunit are always present. By switching gamma to epsilon subunits in late fetal development, fetal AChRs are gradually replaced by adult AChRs. Fetal and adult AChRs are essential for neuromuscular signal transduction. In addition, the fetal AChRs seem to be the guide for the primary encounter of axon and muscle. Because of this important function in organogenesis, human mutations in the gamma subunit were thought to be lethal, as they are in gamma -knockout mice. In contrast, many mutations in other subunits have been found to be viable but cause postnatally persisting or beginning myasthenic syndromes. We conclude that Escobar syndrome is an inherited fetal myasthenic disease that also affects neuromuscular organogenesis. Because gamma expression is restricted to early development, patients have no myasthenic symptoms later in life. This is the major difference from mutations in the other AChR subunits and the striking parallel to the symptoms found in neonates with arthrogryposis when maternal AChR auto-antibodies crossed the placenta and caused the transient inactivation of the AChR pathway.  相似文献   

8.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon, idiopathic partial epilepsy characterized by clusters of motor seizures occurring in sleep. We describe a mutation of the beta2 subunit of the nicotinic acetylcholine receptor, effecting a V287M substitution within the M2 domain. The mutation, in an evolutionary conserved region of CHRNB2, is associated with ADNFLE in a Scottish family. Functional receptors with the V287M mutation are highly expressed in Xenopus oocytes and characterized by an approximately 10-fold increase in acetylcholine sensitivity. CHRNB2 is a new gene for idiopathic epilepsy, the second acetylcholine receptor subunit implicated in ADNFLE.  相似文献   

9.
Multiple pterygium syndromes (MPSs) comprise a group of multiple-congenital-anomaly disorders characterized by webbing (pterygia) of the neck, elbows, and/or knees and joint contractures (arthrogryposis). In addition, a variety of developmental defects (e.g., vertebral anomalies) may occur. MPSs are phenotypically and genetically heterogeneous but are traditionally divided into prenatally lethal and nonlethal (Escobar) types. To elucidate the pathogenesis of MPS, we undertook a genomewide linkage scan of a large consanguineous family and mapped a locus to 2q36-37. We then identified germline-inactivating mutations in the embryonal acetylcholine receptor gamma subunit (CHRNG) in families with both lethal and nonlethal MPSs. These findings extend the role of acetylcholine receptor dysfunction in human disease and provide new insights into the pathogenesis and management of fetal akinesia syndromes.  相似文献   

10.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

11.
Immunohistochemical studies have previously shown that both the chick brain and chick ciliary ganglion neurons contain a component which shares antigenic determinants with the main immunogenic region of the nicotinic acetylcholine receptor from electric organ and skeletal muscle. Here we describe the purification and initial characterization of this putative neuronal acetylcholine receptor. The component was purified by monoclonal antibody affinity chromatography. The solubilized component sediments on sucrose gradients as a species slightly larger than Torpedo acetylcholine receptor monomers. It was affinity labeled with bromo[3H]acetylcholine. Labeling was prevented by carbachol, but not by alpha-bungarotoxin. Two subunits could be detected in the affinity-purified component, apparent molecular weights 48 000 and 59 000. The 48 000 molecular weight subunit was bound both by a monoclonal antibody directed against the main immunogenic region of electric organ and skeletal muscle acetylcholine receptor and by antisera raised against the alpha subunit of Torpedo receptor. Evidence suggests that there are two alpha subunits in the brain component. Antisera from rats immunized with the purified brain component exhibited little or no cross-reactivity with Torpedo electric organ or chick muscle acetylcholine receptor. One antiserum did, however, specifically bind to all four subunits of Torpedo receptor. Experiments to be described elsewhere (J. Stollberg et al., unpublished results) show that antisera to the purified brain component specifically inhibit the electrophysiological function of acetylcholine receptors in chick ciliary ganglion neurons without inhibiting the function of acetylcholine receptors in chick muscle cells. All of these properties suggest that this component is a neuronal nicotinic acetylcholine receptor with limited structural homology to muscle nicotinic acetylcholine receptor.  相似文献   

12.
The α4-subunit gene (CHRNA4) of the neuronal nicotinic acetylcholine receptor (nAChR) subunit family has recently been identified in two families as the gene responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), a rare monogenic idiopathic epilepsy. As a result of this finding, other subunits of the neuronal nAChR gene family are being considered as candidate genes for ADNFLE in families not linked to CHRNA4 and for other idiopathic epilepsies. α4-subunitsoften assemble together with β2-subunits (gene symbol CHRNB2) to build heteromeric nAChRs. The gene encoding another abundant AChR subunit, the α3-subunit gene (CHRNA3), is present with those encoding two other subunits, CHRNB4 and CHRNA5, in a gene cluster whose functional role is still unclear. Here we provide the information on the genomic structures of both the CHRNB2 and the CHRNA3 genes that is necessary for comprehensive mutational analyses, and we refine the genomic assignment of CHRNB2 on chromosome 1. Received: 5 August 1998 / Accepted: 13 October 1998  相似文献   

13.
Summary Idiopathic generalized epilepsies (IGEs) are the most common types of epilepsy in childhood and adolescence. A variety of data suggest that IGEs have a predominant genetic etiology. Recently, a number of gene mutations have been found to be associated with various types of epilepsy in mainly the Caucasian populations. The objective of this study was to investigate the association of three different candidate genes with IGE in Kuwaiti Arab children. This study includes 123 Kuwaiti patients with a confirmed diagnosis of epilepsy. Most of the patients have had a diagnostic EEG with generalized spike-wave discharges (GSWs). All patients were evaluated by using a validated seizure questionnaire. The clinical type of epilepsy was determined by a trained neurologist/pediatrician. The study also include 100 controls, the control subjects were children which did not have any history of neurological disorders. Blood samples were collected from all patients and control subjects after taking informed consent. DNA was isolated and analyzed by molecular methods. A FokI polymorphism in neuronal nicotinic acetylcholine receptor alpha-4 subunit (CHRNA4) gene was detected by PCR-RFLP method. A missense mutation (Ser248Phe) in CHRNA4 gene was analyzed by PCR-RFLP using HpaII. A C121W mutation in sodium-channel beta-1 subunit (SCN1B) gene was screened by a PCR-RFLP method using HinPI. A 2-bp deletion in Cystatin B gene was detected by PCR-RFLP using XcmI. The incidence of three FokI polymorphism genotypes in Kuwaiti IGE patients was 1,1 (85%), 1,2 (14%) and 2,2 (1%) respectively. The missense mutation Ser248Phe of CHRNA4 gene was not detected at all in Kuwaiti IGE patients. The C387G transversion resulting in C121W change in third exon of the SCN1B gene was detected in 3/123 patients (2%). The patients carrying this mutation also exhibited febrile seizures. The incidence of 2 bp deletion in the cystatin B gene was found to be 4% (5/123 IGE patients). The data obtained from molecular analysis show a lack of association between three candidate genes and clinical expression of IGE in Kuwaiti Arab children. This is completely different from the findings reported from Caucasian populations of France, Australia and USA in which case a strong association has been reported between IGE and these genes. To whom corresspondence should be addressed. Tel: +965-5319486; Fax: +965-5338940; E-mail: haider@hsc.edu.kw  相似文献   

14.
We recently described mutations of the neuronal sodium-channel alpha-subunit gene, SCN1A, on chromosome 2q24 in two families with generalized epilepsy with febrile seizures plus (GEFS+) type 2. To assess the contribution that SCN1A makes to other types of epilepsy, 226 patients with either juvenile myoclonic epilepsy, absence epilepsy, or febrile convulsions were screened by conformation-sensitive gel electrophoresis and manual sequencing of variants; the sample included 165 probands from multiplex families and 61 sporadic cases. The novel mutation W1204R was identified in a family with GEFS+. Seven other coding changes were observed; three of these are potential disease-causing mutations. Two common haplotypes, with frequencies of .67 and .33, were defined by five single-nucleotide polymorphisms (SNPs) spanning a 14-kb region of linkage disequilibrium. An SNP located 18 bp upstream of the splice-acceptor site for exon 3 was observed in 7 of the 226 patients but was not present in 185 controls, suggesting possible association with a disease mutation. This work has confirmed the role of SCN1A in GEFS+, by identification of a novel mutation in a previously undescribed family. Although a few candidate disease alleles were identified, the patient survey suggests that SCN1A is not a major contributor to idiopathic generalized epilepsy. The SCN1A haplotypes and SNPs identified here will be useful in future association and linkage studies.  相似文献   

15.
L Li  M Schuchard  A Palma  L Pradier  M G McNamee 《Biochemistry》1990,29(23):5428-5436
Previous chemical modification studies of the acetylcholine receptor [Yee, A.S., Corey, D.E., & McNamee, M.G. (1986) Biochemistry 25, 2110-2119] were extended by using fluorescent N-pyrenylmaleimide to alkylate purified Torpedo californica nicotinic acetylcholine receptor (AChR). Peptide sequencing of the tryptic fragments of the labeled AChR gamma subunit identified cysteines 416, 420, and 451 as the modified residues. The functional role of Cys-451 in the M4 transmembrane domain of the AChR gamma subunit was further investigated by studying the functional consequences of the site-specific mutation of this cysteine to either serine or tryptophan by using AChR mRNAs injected into Xenopus laevis oocytes. Both mutants displayed about 50% reduction in the normalized channel activity of the receptor measured as the ACh-induced conductance per femtomole of surface alpha-bungarotoxin binding sites. However, the mutations did not change other AChR functional properties such as agonist binding ability, the slow phase of desensitization, and blockade by competitive and noncompetitive antagonists. The significant reduction in AChR ion channel activity associated with the above point mutations, especially the simple change of the -SH group on Cys-451 to the -OH group, suggests that this thiol group in the M4 helix of gamma subunit may play an important role in AChR ion channel function. Previous site-directed mutations of the Cys-416 and -420 residues showed a decreased response when both of these residues were changed to phenylalanine, but not when they were changed to serine [Pradier, L., Yee, A.S., & McNamee, M.G. (1989) Biochemistry 28, 6562-6571].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
SCN1A is the most relevant epilepsy gene. Mutations of SCN1A generate phenotypes ranging from the extremely severe form of Dravet syndrome (DS) to a mild form of generalized epilepsy with febrile seizures plus (GEFS+). Mosaic SCN1A mutations have been identified in rare familial DS. It is suspected that mosaic mutations of SCN1A may cause other types of familial epilepsies with febrile seizures (FS), which are more common clinically. Thus, we screened SCN1A mutations in 13 families with partial epilepsy with antecedent febrile seizures (PEFS+) using denaturing high-performance liquid chromatography and sequencing. The level of mosaicism was further quantified by pyrosequencing. Two missense SCN1A mutations with mosaic origin were identified in two unrelated families, accounting for 15.4% (2/13) of the PEFS+ families tested. One of the mosaic carriers with ~25.0% mutation of c.5768A>G/p.Q1923R had experienced simple FS; another with ~12.5% mutation of c.4847T>C/p.I1616T was asymptomatic. Their heterozygous children had PEFS+. Recurrent transmission occurred in both families, as noted in most of the families with germline mosaicism reported previously. The two mosaic mutations identified in this study are less destructive missense, compared with the more destructive truncating and splice-site mutations identified in the majority of previous studies. This is the first report of mosaic SCN1A mutations in families with probands that do not exhibit DS, but manifest only a milder phenotype. Therefore, such families with mild cases should be approached with caution in genetic counseling and the possibility of mosaicism origin associated with high recurrence risk should be excluded.  相似文献   

17.
Childhood absence epilepsy (CAE) accounts for 10% to 12% of epilepsy in children under 16 years of age. We screened for mutations in the GABA(A) receptor (GABAR) beta 3 subunit gene (GABRB3) in 48 probands and families with remitting CAE. We found that four out of 48 families (8%) had mutations in GABRB3. One heterozygous missense mutation (P11S) in exon 1a segregated with four CAE-affected persons in one multiplex, two-generation Mexican family. P11S was also found in a singleton from Mexico. Another heterozygous missense mutation (S15F) was present in a singleton from Honduras. An exon 2 heterozygous missense mutation (G32R) was present in two CAE-affected persons and two persons affected with EEG-recorded spike and/or sharp wave in a two-generation Honduran family. All mutations were absent in 630 controls. We studied functions and possible pathogenicity by expressing mutations in HeLa cells with the use of Western blots and an in vitro translation and translocation system. Expression levels did not differ from those of controls, but all mutations showed hyperglycosylation in the in vitro translation and translocation system with canine microsomes. Functional analysis of human GABA(A) receptors (alpha 1 beta 3-v2 gamma 2S, alpha 1 beta 3-v2[P11S]gamma 2S, alpha 1 beta 3-v2[S15F]gamma 2S, and alpha 1 beta 3-v2[G32R]gamma 2S) transiently expressed in HEK293T cells with the use of rapid agonist application showed that each amino acid transversion in the beta 3-v2 subunit (P11S, S15F, and G32R) reduced GABA-evoked current density from whole cells. Mutated beta 3 subunit protein could thus cause absence seizures through a gain in glycosylation of mutated exon 1a and exon 2, affecting maturation and trafficking of GABAR from endoplasmic reticulum to cell surface and resulting in reduced GABA-evoked currents.  相似文献   

18.
Affinity-labeling of purified acetylcholine receptor from Torpedo californica   总被引:22,自引:0,他引:22  
The receptor for acetylcholine purified from electric tissue of Torpedo californica has been assayed both by affinity-alkylation and by neurotoxin binding. The specific activity by the latter method is about twice that by the former. Four major components of apparent molecular weights of 39,000, 48,000, 58,000 and 64,000 are separated by dodecyl sulfate-acrylamide gel electrophoresis. Reduction and affinity-alkylation of the receptor with a tritiated quaternary ammonium maleimide derivative results in the exclusive labeling of the 39,000 dalton subunit. This subunit, it is concluded, contains all or part of the acetylcholine binding site.  相似文献   

19.
Strains of Drosophila melanogaster with resistance to the insecticides spinosyn A, spinosad, and spinetoram were produced by chemical mutagenesis. These spinosyn-resistant strains were not cross-resistant to other insecticides. The two strains that were initially characterized were subsequently found to have mutations in the gene encoding the nicotinic acetylcholine receptor (nAChR) subunit Dα6. Subsequently, additional spinosyn-resistant alleles were generated by chemical mutagenesis and were also found to have mutations in the gene encoding Dα6, providing convincing evidence that Dα6 is a target site for the spinosyns in D. melanogaster. Although a spinosyn-sensitive receptor could not be generated in Xenopus laevis oocytes simply by expressing Dα6 alone, co-expression of Dα6 with an additional nAChR subunit, Dα5, and the chaperone protein ric-3 resulted in an acetylcholine- and spinosyn-sensitive receptor with the pharmacological properties anticipated for a native nAChR.  相似文献   

20.
Examination of low-density lipoprotein (LDL) receptor gene, its promoter, and most of exon-intron boundaries from 74 probands with familial hypercholesterolemia (FH) of St. Petersburg revealed 34 mutations and 8 widely spread polymorphisms at this locus. Only four mutations were considered neutral, while the other 30 are likely to cause familial hypercholesterolemia (FH). Mutations in the LDL receptor gene, causing the disease, were identified in 41 (55%) out of 74 families with FH. Mutation R3500Q in apolipoprotein B (APOB) gene was not detected in all probands. Therefore in the families lacking mutations hypercholesterolemia was caused by mutations in the introns of the LDL receptor gene or by other genetic factors. Nineteen mutations causing disease progression were described in St. Petersburg for the first time, while 18 of them are specific for Russia. Among Ashkenazi Jews, predominant mutation G197del was detected in 30% (7 out of 22) of patients with FH. In the Slavic population of St. Petersburg, no predominant mutations were detected. Only five mutations were identified in two Slavic families, while 24 were found in unique families. These data are indicative of the lack of a strong founder effect for FH in the St. Petersburg population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号