首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Flavin mononucleotide (FMN)-binding proteins (FBPs) play an important role in the electron transport process in bacteria. In this study, the structures of the FBP from Desulfovibrio vulgaris (DvFBP) (Miyazaki F) were compared between those obtained experimentally by nuclear magnetic resonance (NMR) spectroscopy and those derived from molecular dynamics simulations (MDSs). A high-residue root of mean square deviation (RMSD) was observed in residues located at both sides of the wings (Gly22, Glu23, Asp24, Ala59, Arg60, Asp61, Glu62, Gly75, Arg76, Asn77, Gly78 and Pro79), while a low-residue RMSD was found in residues located in a hollow of the structure (Asn12, Glu13, Gly14, Val15, Val16, Asn30, Thr31, Trp32, Asn33, Ser34, Gly69, Ser70, Arg71 and Lys72). Inter-planar angles between the Phe7 and Iso and between the Phe7 and Trp106 residues were remarkably different between the MDS- and NMR-derived DvFBP structures. Distribution of the torsion angles around the covalent bonds in the aliphatic chain of FMN was similar in the MDS- and NMR-derived structures, except for those around the C1′–C2′ and C5′–O5′ bonds. Hydrogen bond formation between IsoO2 and the Gly49 or Gly50 peptide NH was formed in both the NMR- and MDS-derived structures. Overall, the MDS-derived structures were found to be considerably different from the NMR-derived structures, which must be considered when the photoinduced electron transfer in flavoproteins is analysed with MDS-derived structures.  相似文献   

2.
Fan H  Mark AE 《Proteins》2003,53(1):111-120
The relative stability of protein structures determined by either X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy has been investigated by using molecular dynamics simulation techniques. Published structures of 34 proteins containing between 50 and 100 residues have been evaluated. The proteins selected represent a mixture of secondary structure types including all alpha, all beta, and alpha/beta. The proteins selected do not contain cysteine-cysteine bridges. In addition, any crystallographic waters, metal ions, cofactors, or bound ligands were removed before the systems were simulated. The stability of the structures was evaluated by simulating, under identical conditions, each of the proteins for at least 5 ns in explicit solvent. It is found that not only do NMR-derived structures have, on average, higher internal strain than structures determined by X-ray crystallography but that a significant proportion of the structures are unstable and rapidly diverge in simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号