首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we showed that chitin synthase 2 (Chs2) is required for septum formation in Saccharomyces cerevisiae, whereas chitin synthase 1 (Chs1) does not appear to be an essential enzyme. However, in strains carrying a disrupted CHS1 gene, frequent lysis of buds is observed. Lysis occurs after nuclear separation and appears to result from damage to the cell wall, as indicated by osmotic stabilization and by a approximately 50-nm orifice at the center of the birth scar. Lysis occurs at a low pH and is prevented by buffering the medium above pH 5. A likely candidate for the lytic system is a previously described chitinase that is probably involved in cell separation. The chitinase has a very acidic pH optimum and a location in the periplasmic space that exposes it to external pH. Accordingly, allosamidin, a specific chitinase inhibitor, substantially reduced the number of lysed cells. Because the presence of Chs1 in the cell abolishes lysis, it is concluded that damage to the cell wall is caused by excessive chitinase activity at acidic pH, which can normally be repaired through chitin synthesis by Chs1. The latter emerges as an auxiliary or emergency enzyme. Other experiments suggest that both Chs1 and Chs2 collaborate in the repair synthesis of chitin, whereas Chs1 cannot substitute for Chs2 in septum formation.  相似文献   

2.
Cytokinesis, which leads to the physical separation of two dividing cells, is normally restrained until after nuclear division. In Saccharomyces cerevisiae, chitin synthase 2 (Chs2), which lays down the primary septum at the mother-daughter neck, also ensures proper actomyosin ring constriction during cytokinesis. During the metaphase-to-anaphase transition, phosphorylation of Chs2 by the mitotic cyclin-dependent kinase (Cdk1) retains Chs2 at the endoplasmic reticulum (ER), thereby preventing its translocation to the neck. Upon Cdk1 inactivation at the end of mitosis, Chs2 is exported from the ER and targeted to the neck. The mechanism for triggering Chs2 ER export thus far is unknown. We show here that Chs2 ER export requires the direct reversal of the inhibitory Cdk1 phosphorylation sites by Cdc14 phosphatase, the ultimate effector of the mitotic exit network (MEN). We further show that only Cdc14 liberated by the MEN after completion of chromosome segregation, and not Cdc14 released in early anaphase by the Cdc fourteen early anaphase release pathway, triggers Chs2 ER exit. Presumably, the reduced Cdk1 activity in late mitosis further favors dephosphorylation of Chs2 by Cdc14. Thus, by requiring declining Cdk1 activity and Cdc14 nuclear release for Chs2 ER export, cells ensure that septum formation is contingent upon chromosome separation and exit from mitosis.  相似文献   

3.
The growths of Saccharomyces cerevisiae wild-type strain and another strain containing a disrupted structural gene for chitin synthase (chs1::URA3), defective in chitin synthase 1 (Chs1) but showing a new chitin synthase activity (Chs2), were affected by Calcofluor. To be effective, the interaction of Calcofluor with growing cells had to occur at around pH 6. Treatment of growing cells from these strains with the fluorochrome led to an increase in the total levels of Chs1 and Chs2 activities measured on permeabilized cells. During treatment, basal levels (activities expressed in the absence of exogenous proteolytic activation) of Chs1 and Chs2 increased nine- and fourfold, respectively, through a mechanism dependent on protein synthesis, since the effect was abolished by cycloheximide. During alpha-factor treatment, both Chs1 and Chs2 levels increased; however, as opposed to what occurred during the mitotic cell cycle, there was no further increase in Chs1 or Chs2 activities by Calcofluor treatment.  相似文献   

4.
A nonradioactive,high throughput assay for chitin synthase activity   总被引:1,自引:0,他引:1  
Wheat germ agglutinin (WGA) binds with high affinity and specificity to several sites on chitin polymers. Based on these properties we have modified and adapted a previously patented (U.S. patent 5,888,757) nonradioactive, high throughput screening assay for antimicrobial agents, making it suitable as a quantitative enzymatic assay for the activity of individual chitin synthase isozymes in yeast. The procedure involves binding of synthesized chitin to a WGA-coated surface followed by detection of the polymer with a horseradish peroxidase-WGA conjugate. Horseradish peroxidase activity is then determined as an increment in absorbance at 600 nm. Absorbance values are converted to amounts of chitin using acid-solubilized chitin as a standard. The high sensitivity (lower limit of detection about 50 ng chitin), low dispersion (lower than 10%), and high throughput (96-well microtiter plate format) make this assay an excellent substitute for the conventional radioactive chitin synthase assay in cell-free extracts. We have applied this method to the differential assay of chitin synthase activities (Chs1, Chs2, and Chs3) in cell-free extracts of Saccharomyces cerevisiae. Analysis of Chs3 activity in chitosomal and plasma membrane fractions revealed that Chs3 in the plasma membrane fraction is about sixfold more active than in the chitosome.  相似文献   

5.
The exomer complex is a putative vesicle coat required for the direct transport of a subset of cargoes from the trans-Golgi network (TGN) to the plasma membrane. Exomer comprises Chs5p and the ChAPs family of proteins (Chs6p, Bud7p, Bch1p, and Bch2p), which are believed to act as cargo receptors. In particular, Chs6p is required for the transport of the chitin synthase Chs3p to the bud neck. However, how the ChAPs associate with Chs5p and recognize cargo is not well understood. Using domain-switch chimeras of Chs6p and Bch2p, we show that four tetratricopeptide repeats (TPRs) are involved in interaction with Chs5p. Because these roles are conserved among the ChAPs, the TPRs are interchangeable among different ChAP proteins. In contrast, the N-terminal and the central parts of the ChAPs contribute to cargo specificity. Although the entire N-terminal domain of Chs6p is required for Chs3p export at all cell cycle stages, the central part seems to predominantly favor Chs3p export in small-budded cells. The cargo Chs3p probably also uses a complex motif for the interaction with Chs6, as the C-terminus of Chs3p interacts with Chs6p and is necessary, but not sufficient, for TGN export.  相似文献   

6.
Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named ‘ingression progression complexes’ (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role.  相似文献   

7.
In Saccharomyces cerevisiae, the synthesis of chitin, a cell-wall polysaccharide, is temporally and spatially regulated with respect to the cell cycle and morphogenesis. Using immunological reagents, we found that steady-state levels of Chs1p and Chs3p, two chitin synthase enzymes, did not fluctuate during the cell cycle, indicating that they are not simply regulated by synthesis and degradation. Previous cell fractionation studies demonstrated that chitin synthase I activity (CSI) exists in a plasma membrane form and in intracellular membrane-bound particles called chitosomes. Chitosomes were proposed to act as a reservoir for regulated transport of chitin synthase enzymes to the division septum. We found that Chs1p and Chs3p resided partly in chitosomes and that this distribution was not cell cycle regulated. Pulse-chase cell fractionation experiments showed that chitosome production was blocked in an endocytosis mutant (end4-1), indicating that endocytosis is required for the formation or maintenance of chitosomes. Additionally, Ste2p, internalized by ligand-induced endocytosis, cofractionated with chitosomes, suggesting that these membrane proteins populate the same endosomal compartment. However, in contrast to Ste2p, Chs1p and Chs3p were not rapidly degraded, thus raising the possibility that the temporal and spatial regulation of chitin synthesis is mediated by the mobilization of an endosomal pool of chitin synthase enzymes.  相似文献   

8.
The deposition of the polysaccharide chitin in the Saccharomyces cerevisiae cell wall is temporally and spatially regulated. Chitin synthase III (Chs3p) synthesizes a ring of chitin at the onset of bud emergence, marking the base of the incipient bud. At the end of mitosis, chitin synthase II (Chs2p) deposits a disk of chitin in the mother-bud neck, forming the primary division septum. Using indirect immunofluorescence microscopy, we have found that these two integral membrane proteins localize to the mother-bud neck at distinct times during the cell cycle. Chs2p is found at the neck at the end of mitosis, whereas Chs3p localizes to a ring on the surface of cells about to undergo bud emergence and in the mother-bud neck of small- budded cells. Cell synchronization and pulse-chase experiments suggest that the timing of Chs2p localization results from cell cycle-specific synthesis coupled to rapid degradation. Chs2p degradation depends on the vacuolar protease encoded by PEP4, indicating that Chs2p is destroyed in the vacuole. Temperature-sensitive mutations that block either the late secretory pathway (sec1-1) or the internalization step of endocytosis (end4-1) also prevent Chs2p degradation. In contrast, Chs3p is synthesized constitutively and is metabolically stable, indicating that Chs2p and Chs3p are subject to different modes of regulation. Differential centrifugation experiments show that a significant proportion of Chs3p resides in an internal compartment that may correspond to a vesicular species called the chitosome (Leal- Morales, C.A., C.E. Bracker, and S. Bartnicki-Garcia. 1988, Proc. Natl. Acad. Sci. USA. 85:8516-8520; Flores Martinez, A., and J. Schwencke. 1988. Biochim. Biophys. Acta. 946:328-336). Fractionation of membranes prepared from mutants defective in internalization (end3-1 and end4-1) indicate that the Chs3p-containing vesicles are endocytically derived. Collectively, these data suggest that the trafficking of Chs2p and Chs3p diverges after endocytosis; Chs3p is not delivered to the vacuole, but instead may be recycled.  相似文献   

9.
How cell cycle machinery regulates extracellular matrix (ECM) remodeling during cytokinesis remains poorly understood. In the budding yeast Saccharomyces cerevisiae, the primary septum (PS), a functional equivalent of animal ECM, is synthesized during cytokinesis by the chitin synthase Chs2. Here, we report that Dbf2, a conserved mitotic exit kinase, localizes to the division site after Chs2 and directly phosphorylates Chs2 on several residues, including Ser-217. Both phosphodeficient (chs2-S217A) and phosphomimic (chs2-S217D) mutations cause defects in cytokinesis, suggesting that dynamic phosphorylation-dephosphorylation of Ser-217 is critical for Chs2 function. It is striking that Chs2-S217A constricts asymmetrically with the actomyosin ring (AMR), whereas Chs2-S217D displays little or no constriction and remains highly mobile at the division site. These data suggest that Chs2 phosphorylation by Dbf2 triggers its dissociation from the AMR during the late stage of cytokinesis. Of interest, both chs2-S217A and chs2-S217D mutants are robustly suppressed by increased dosage of Cyk3, a cytokinesis protein that displays Dbf2-dependent localization and also stimulates Chs2-mediated chitin synthesis. Thus Dbf2 regulates PS formation through at least two independent pathways: direct phosphorylation and Cyk3-mediated activation of Chs2. Our study establishes a mechanism for direct cell cycle control of ECM remodeling during cytokinesis.  相似文献   

10.
In budding yeast, chs5 mutants are defective in chitin synthesis and cell fusion during mating. Chs5p is a late-Golgi protein required for the polarized transport of the chitin synthase Chs3p to the membrane. Here we show that Chs5p is also essential for the polarized targeting of Fus1p, but not of other cell fusion proteins, to the membrane during mating.  相似文献   

11.
In budding yeast, the secretory pathway is constitutively transporting cargoes such as invertase and α-factor throughout the cell division cycle. However, chitin synthase 2 (Chs2p), another cargo of the secretory pathway, is retained at the endoplasmic reticulum (ER) during mitosis when the mitotic kinase activity is high. Chs2p is exported from the ER to the mother-daughter neck only upon mitotic kinase destruction, indicating that the mitotic kinase activity is critical for the ER retention of Chs2p. However, a key question is whether the mitotic kinase acts directly upon Chs2p to prevent its ER export. We report here that mutation of Ser residues to Glu at 4 perfect CDK1-phosphorylation sites at the N-terminus of Chs2p leads to its retention in the ER when the mitotic kinase activity is absent. Conversely, Ser-to-Ala mutations result in the loss of Chs2p ER retention even when mitotic kinase activity is high. The mere over-expression of the non-destructible form of the mitotic cyclin in G1 cells can confine the wild-type Chs2p but not the Ser-to-Ala mutant in the ER. Furthermore, over-expression of the Ser-to-Ala mutant kills cells. Time-lapsed imaging revealed that Chs2p is exported from the ER rapidly and synchronously to the Golgi upon metaphase release. Our data indicate that direct phosphorylation of Chs2p by the mitotic CDK1 helps restrain it in the ER during mitosis to prevent its rapid export in an untimely manner until after sister chromatid occurs and mitotic exit executed.  相似文献   

12.
Chs4p (Cal2/Csd4/Skt5) was identified as a protein factor physically interacting with Chs3p, the catalytic subunit of chitin synthase III (CSIII), and is indispensable for its enzymatic activity in vivo. Chs4p contains a putative farnesyl attachment site at the C-terminal end (CVIM motif) conserved in Chs4p of Saccharomyces cerevisiae and other fungi. Several previous reports questioned the role of Chs4p prenylation in chitin biosynthesis. In this study we reinvestigated the function of Chs4p prenylation. We provide evidence that Chs4p is farnesylated by showing that purified Chs4p is recognized by anti-farnesyl antibody and is a substrate for farnesyl transferase (FTase) in vitro and that inactivation of FTase increases the amount of unmodified Chs4p in yeast cells. We demonstrate that abolition of Chs4p prenylation causes a approximately 60% decrease in CSIII activity, which is correlated with a approximately 30% decrease in chitin content and with increased resistance to the chitin binding compound calcofluor white. Furthermore, we show that lack of Chs4p prenylation decreases the average chain length of the chitin polymer. Prenylation of Chs4p, however, is not a factor that mediates plasma membrane association of the protein. Our results provide evidence that the prenyl moiety attached to Chs4p is a factor modulating the activity of CSIII both in vivo and in vitro.  相似文献   

13.
Traffic of the integral yeast membrane protein chitin synthase III (Chs3p) from the trans-Golgi network (TGN) to the cell surface and to and from the early endosomes (EE) requires active protein sorting decoded by a number of protein coats. Here we define overlapping signals on Chs3p responsible for sorting in both exocytic and intracellular pathways by the coats exomer and AP-1, respectively. Residues 19DEESLL24, near the N-terminal cytoplasmically-exposed domain, comprise both an exocytic di-acidic signal and an intracellular di-leucine signal. Additionally we show that the AP-3 complex is required for the intracellular retention of Chs3p. Finally, residues R374 and W391, comprise another signal responsible for an exomer-independent alternative pathway that conveys Chs3p to the cell surface. These results establish a role for active protein sorting at the trans-Golgi en route to the plasma membrane (PM) and suggest a possible mechanism to regulate protein trafficking.  相似文献   

14.
Actomyosin ring contraction and chitin primary septum deposition are interdependent processes in cell division of budding yeast. By fusing Myo1p, as representative of the contractile ring, and Chs2p for the primary septum, to different fluorescent proteins we show herein that the two processes proceed essentially at the same location and simultaneously. Chs2p differs from Myo1p in that it reflects the changes in shape of the plasma membrane to which it is attached and in that it is packed after its action into visible endocytic vesicles for its disposal. To ascertain whether this highly coordinated system could function independently of other cell cycle events, we reexamined the septum-like structures made by the septin mutant cdc3 at various sites on the cell cortex at the nonpermissive temperature. With the fluorescent fusion proteins mentioned above, we observed that in cdc3 at 37 degrees C both Myo1p and Chs2p colocalize at different spots of the cell cortex. A contraction of the Myo1p patch could also be detected, as well as that of a Chs2p patch, with subsequent appearance of vesicles. Furthermore, the septin Cdc12p, fused with yellow or cyan fluorescent protein, also colocalized with Myo1p and Chs2p at the aberrant locations. The formation of delocalized septa did not require nuclear division. We conclude that the septation apparatus, composed of septins, contractile ring, and the chitin synthase II system, can function at ectopic locations autonomously and independently of cell division, and that it can recruit the other elements necessary for the formation of secondary septa.  相似文献   

15.
Echinocandins are a new generation of novel antifungal agent that inhibit cell wall beta(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca(2+)-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity.  相似文献   

16.
Ste24 is a membrane-integral CaaX metalloprotease residing in the endoplasmic reticulum (ER). In yeast, the only known substrate of Ste24 is the mating factor a precursor. A global screening for protein–protein interactions indicated that Ste24 interacts with chitin synthesis deficient (Chs)3, an enzyme required for chitin synthesis. We confirmed this interaction by yeast two-hybrid analyses and mapped the interacting cytoplasmic domains. Next, we investigated the influence of Ste24 on chitin synthesis. In sterile (ste)24Δ mutants, we observed resistance to calcofluor white (CFW), which was also apparent when the cells expressed a catalytically inactive version of Ste24. In addition, ste24Δ cells showed a decrease in chitin levels and Chs3-green fluorescent protein localized less frequently at the bud neck. Overexpression of STE24 resulted in hypersensitivity to CFW and a slight increase in chitin levels. The CFW phenotype of ste24Δ cells could be rescued by its human and insect orthologues. Although Chs3 binds to Ste24, it seems not to be a substrate for this protease. Instead, our data suggest that Chs3 and Ste24 form a complex in the ER that facilitates protease action on prenylated Chs4, a known activator of Chs3 with a C-terminal CaaX motif, leading to a more efficient localization of Chs3 at the plasma membrane.  相似文献   

17.
The polytopic yeast protein Chs3 (chitin synthase III) relies on a dedicated membrane‐localized chaperone, Chs7, for its folding and expression at the cell surface. In the absence of Chs7, Chs3 forms high molecular weight aggregates and is retained in the endoplasmic reticulum (ER). Chs7 was reported to be an ER resident protein, but its role in Chs3 folding and transport was not well characterized. Here, we show that Chs7 itself exits the ER and localizes with Chs3 at the bud neck and intracellular compartments. We identified mutations in the Chs7 C‐terminal cytosolic domain that do not affect its chaperone function, but cause it to dissociate from Chs3 at a post‐ER transport step. Mutations that prevent the continued association of Chs7 with Chs3 do not block delivery of Chs3 to the cell surface, but dramatically reduce its catalytic activity. This suggests that Chs7 engages in functionally distinct interactions with Chs3 to first promote its folding and ER exit, and subsequently to regulate its activity at the plasma membrane.   相似文献   

18.
Chitin is an essential structural component of the yeast cell wall whose deposition is regulated throughout the yeast life cycle. The temporal and spatial regulation of chitin synthesis was investigated during vegetative growth and mating of Saccharomyces cerevisiae by localization of the putative catalytic subunit of chitin synthase III, Chs3p, and its regulator, Chs5p. Immunolocalization of epitope-tagged Chs3p revealed a novel localization pattern that is cell cycledependent. Chs3p is polarized as a diffuse ring at the incipient bud site and at the neck between the mother and bud in small-budded cells; it is not found at the neck in large-budded cells containing a single nucleus. In large-budded cells undergoing cytokinesis, it reappears as a ring at the neck. In cells responding to mating pheromone, Chs3p is found throughout the projection. The appearance of Chs3p at cortical sites correlates with times that chitin synthesis is expected to occur. In addition to its localization at the incipient bud site and neck, Chs3p is also found in cytoplasmic patches in cells at different stages of the cell cycle. Epitope-tagged Chs5p also localizes to cytoplasmic patches; these patches contain Kex2p, a late Golgi-associated enzyme. Unlike Chs3p, Chs5p does not accumulate at the incipient bud site or neck. Nearly all Chs3p patches contain Chs5p, whereas some Chs5p patches lack detectable Chs3p. In the absence of Chs5p, Chs3p localizes in cytoplasmic patches, but it is no longer found at the neck or the incipient bud site, indicating that Chs5p is required for the polarization of Chs3p. Furthermore, Chs5p localization is not affected either by temperature shift or by the myo2-66 mutation, however, Chs3p polarization is affected by temperature shift and myo2-66. We suggest a model in which Chs3p polarization to cortical sites in yeast is dependent on both Chs5p and the actin cytoskeleton/Myo2p.  相似文献   

19.
Just before bud emergence, a Saccharomyces cerevisiae cell forms a ring of chitin in its cell wall; this ring remains at the base of the bud as the bud grows and ultimately forms part of the bud scar marking the division site on the mother cell. The chitin ring seems to be formed largely or entirely by chitin synthase III, one of the three known chitin synthases in S. cerevisiae. The chitin ring does not form normally in temperature-sensitive mutants defective in any of four septins, a family of proteins that are constituents of the “neck filaments” that lie immediately subjacent to the plasma membrane in the mother-bud neck. In addition, a synthetic-lethal interaction was found between cdc12-5, a temperature-sensitive septin mutation, and a mutant allele of CHS4, which encodes an activator of chitin synthase III. Two-hybrid analysis revealed no direct interaction between the septins and Chs4p but identified a novel gene, BNI4, whose product interacts both with Chs4p and Cdc10p and with one of the septins, Cdc10p; this analysis also revealed an interaction between Chs4p and Chs3p, the catalytic subunit of chitin synthase III. Bni4p has no known homologues; it contains a predicted coiled-coil domain, but no other recognizable motifs. Deletion of BNI4 is not lethal, but causes delocalization of chitin deposition and aberrant cellular morphology. Overexpression of Bni4p also causes delocalization of chitin deposition and produces a cellular morphology similar to that of septin mutants. Immunolocalization experiments show that Bni4p localizes to a ring at the mother-bud neck that lies predominantly on the mother-cell side (corresponding to the predominant site of chitin deposition). This localization depends on the septins but not on Chs4p or Chs3p. A GFP-Chs4p fusion protein also localizes to a ring at the mother-bud neck on the mother-cell side. This localization is dependent on the septins, Bni4p, and Chs3p. Chs3p, whose normal localization is similar to that of Chs4p, does not localize properly in bni4, chs4, or septin mutant strains or in strains that accumulate excess Bni4p. In contrast, localization of the septins is essentially normal in bni4, chs4, and chs3 mutant strains and in strains that accumulate excess Bni4p. Taken together, these results suggest that the normal localization of chitin synthase III activity is achieved by assembly of a complex in which Chs3p is linked to the septins via Chs4p and Bni4p.  相似文献   

20.
The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号