首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action.  相似文献   

2.
The state of T cell activation and proliferation controls HIV-1 replication and gene expression. Previously, we demonstrated that the administration of PHA and PMA to the human T cell line Jurkat activates the HIV-1 enhancer, which is composed of two nuclear factor kappa B (NF kappa B) binding sites. Here, we show that PMA alone is sufficient for this effect. In addition, activation of T cells through the surface proteins TCR/CD3 and CD28 increased gene expression directed by the HIV-1 long terminal repeat (LTR) to the same extent as PMA. Analysis of 5' deletions in the LTR revealed that the NF kappa B binding sites and sequences in the upstream U3 region are required for this response. Whereas cyclosporin A did not inhibit the effect of PMA, it reduced the effects of agonists to TCR/CD3 and CD28 on the LTR. H7, an inhibitor of protein kinase C (PKC), blocked the effects of all stimuli. Thus, PMA activates the NF kappa B sites through a PKC-dependent pathway while ligands to TCR/CD3 and CD28 activate the LTR through a cyclosporin A-sensitive, PKC-dependent pathway of T cell activation. We conclude that mechanisms involved in the expression of IL-2 and the alpha-chain of the IL-2R alpha genes also play a role in the regulation of HIV-1. Physiologic stimuli can activate HIV-1 gene expression; agents that block T cell activation also inhibit activation of the LTR. These observations might serve as a model for the regulation of HIV-1 gene expression in peripheral blood T cells.  相似文献   

3.
CD43 is a constitutively phosphorylated 115-kDa sialoglycoprotein expressed on a variety of blood cells including lymphocytes and monocytes. L10, a mAb directed against CD43, triggers T cell activation and enhances hydrogen peroxide production in monocytes. Activation of mononuclear cells by L10 initiates phosphoinositides hydrolysis, C2+ mobilization, and protein kinase C (PKC) activation. In turn, activated PKC hyperphosphorylates CD43, suggesting a potential role for PKC in the regulation of signaling via CD43. To address this issue, we have analyzed the effect of PKC activation by the tumor promoter PMA on L10-triggered rise in intracellular free Ca2+ concentrations ([Ca2+]i). Treatment of mononuclear cells with PMA profoundly inhibited the increase in [Ca2+]i induced by L10. The inhibition of CD43-mediated signaling by PMA was due, in part, to uncoupling of CD43 from the signal-transducing G protein. This was evidenced by the comparatively modest inhibition by PMA of the increase in [Ca2+]i induced by the direct G protein activator AlF4-. PMA treatment did not affect the surface expression of CD43. However, it induced the hyperphosphorylation of CD43, the extent of which correlated with the inhibition of CD43-mediated increase in [Ca2+]i. Staurosporine, a potent inhibitor of PKC, abrogated the hyperphosphorylation of CD43 and normalized CD43-mediated signaling in PMA-treated cells. Significantly, in the absence of PMA, staurosporine enhanced the rise in [Ca2+]i triggered by L10, suggesting that engagement of CD43 by activating ligands results in feedback inhibition by PKC. It is concluded that activation of PKC inhibits signaling via CD43 by mechanisms involving phosphorylation and uncoupling of CD43 from the signal-transducing apparatus and by distal, post-receptor events.  相似文献   

4.
The membrane glycoproteins CD4 (L3T4) and CD8 (Lyt2) are expressed on distinct populations of mature murine T lymphocytes, and are thought to be receptors for monomorphic determinants expressed on MHC class II and class I molecules, respectively. Although they differ in their ligand specificity, it has been presumed that CD4 and CD8 perform equivalent functions in the T cells that bear them. Since activation of protein kinase C (PKC) is known to cause rapid down-regulation of various receptors, including the T cell receptor complex (TcR complex), we treated cells with phorbol 12-myristate 13-acetate (PMA), a PKC activator, to determine whether cell-surface expression of CD4 and CD8 would be similarly affected by this intracellular mediator. Brief or relatively prolonged treatment with PMA induced mature murine T cells to reduce their surface expression of the TcR complex and of CD4, but not of CD8. Similarly, PMA rapidly induced transfected L cells to down-regulate surface CD4 expression, but had no effect on surface CD8 expression. Most significantly, PMA treatment induced CD4+CD8+ immature thymocytes to rapidly reduce their surface CD4 expression, but, again, it had no immediate effect on the surface expression of CD8. These results indicate that CD4 and TcR complex cell-surface expression are both sensitive to PKC activation by brief treatment with PMA, whereas CD8 expression is not, and suggest that CD4 and CD8 surface expression levels are regulated by distinct intracellular mechanisms.  相似文献   

5.
Proliferative T cell responses were elicited in a comitogenic assay when purified mAb against CD 18, CD11a, LFA-3, and CD7 were immobilized onto solid plastic surfaces together with submitogenic doses of mAb against the CD3 complex. The proliferative response was associated to the production of IL-2 and to the expression of IL-2R. We explored the possibility that a second signal provided by either PMA or a Ca2+ ionofore could replace the anti-CD3 mAb in the comitogenic assay. Interestingly, our data clearly indicate that PMA but not the ionofore was capable of mediating the co-mitogenic effect in conjunction with solid-bound mAb (CDw18, CD11a, LFA-3, and CD7). We also demonstrate that the mAb (anti-CD4 and anti-CD2) which have been previously described as co-mitogenic in combination with anti-CD3 are capable of eliciting this activating signal in the presence of PMA. These data indicate that mAb to certain cell surface differentiation Ag that in soluble form inhibit T cell function such as LFA-1, LFA-3, and CD2 can under appropriate conditions induce co-mitogenic signals on T cells. Our results support the hypothesis that several cell surface differentiation Ag may participate in conjunction with the T3-Ti complex in the transmembrane signal transduction leading to T cell activation.  相似文献   

6.
Ligation of the CD3 receptor induces multiple signal transduction events that modify the activation state of the T cell. We have compared two lines that express biologically active CD3 receptors but differ in their biochemical activation pathways during ligation of this receptor. Jurkat cells respond to anti-CD3 with Ca2+ mobilization, PKC activation, induction of protein tyrosine phosphorylation, and activation of newly characterized lymphoid microtubule associated protein-2 kinase (MAP-2K). MAP-2K itself is a 43-kDa phosphoprotein that requires tyrosine phosphorylation for activation. Although ligation of the CD3 receptor in HPB-ALL could stimulate tyrosine phosphorylation of a 59- kDa substrate, there was no associated induction of [Ca2+]i flux, PKC, or MAP-2K activation. A specific PKC agonist, PMA, which bypasses the CD3 receptor, could, however, activate MAP-2K in HPB-ALL cells. This implies that defective stimulation of PKC by the CD3 receptor is responsible for its failure to activate MAP-2K in HPB-ALL. The defect in PKC activation is likely distal to the CD3 receptor as A1F14- failed to activate MAP-2K in HPB-ALL but was effective in Jurkat cells. The stimulatory effect of PMA on MAP-2K activity in HPB-ALL was accompanied by tyrosine phosphorylation of this kinase which implies that PKC may, in some way, regulate tyrosine phosphorylation of MAP-2K. A candidate for this role is pp56lck which underwent posttranslational modification (seen as mobility change on SDS-PAGE) during anti-CD3 and PMA stimulation in Jurkat or PMA treatment in HPB-ALL. There was, in fact, exact coincidence between induction of PKC activity, posttranslational modification of lck and tyrosine phosphorylation/activation of MAP-2K. Lck kinase activity in an immune complex kinase assay was unchanged during PMA treatment. An alternative explanation is that modification of lck may alter its substrate profile. We therefore looked at the previously documented ability of PKC to dissociate lck from the CD4 receptor and found that PMA could reduce the stoichiometry of the lck interaction with CD4 in HPB-ALL and to a lesser extent in Jurkat cells. These results imply the existence of a kinase cascade that is initiated by PKC and, in the course of which, lck and MAP-2K may interact.  相似文献   

7.
For T cell activation, two signals are required, i.e., a T cell receptor (TCR)/CD3-mediated main signal and a CD28-mediated costimulatory signal. CD28 binds to its ligand (CD80 or CD86) and transduces the most important costimulatory signal. The cytoplasmic domain of the CD28 molecule, composed of 41 amino acids, does not contain any intrinsic enzyme activity. The cytoplasmic domain of CD28 is remarkably conserved among species and is associated with a number of signaling molecules that affect the main signal. We report here that a tyrosine phosphorylated 100-kDa protein (ppl00) was coupled to the CD28 cytoplasmic domain in Jurkat and human peripheral T cells. The pp100 was distinguished from other CD28 associated molecules such as Vav, STAT5, PI 3-kinase, Valosin-containing protein (VCP), Nucleolin, Gab2 (Grb2-associated binding protein 2), and STAT6. The tyrosine phosphorylation of pp100 coprecipitated with CD28 was enhanced by CD3 stimulation by the specific antibody, tyrosine phosphatase inhibitor and PKC activator. Tyrosine phosphorylation of pp100 was attenuated by the prior addition of PKC inhibitor. These findings indicate that pp100 is a novel tyrosine phosphorylated protein coupled to CD28 under continuous control of tyrosine phosphatases and might play a role in T cell activation augmented by a TCR/CD3-mediated main signal.  相似文献   

8.
Signaling via the alpha-beta T cell Ag receptor (Ti)-CD3 complex is a complicated event that implicates several protein kinases, most notably protein kinase C (PKC). We have recently identified a serine kinase in T lymphocytes with the following characteristics: molecular mass 43 kDa, in vitro substrate affinity for microtubule associated protein 2 (MAP-2) with a preference for Mn2+ during the catalytic reaction, and elution from DEAE resin over a salt range 100 to 200 mM NaCl. This kinase is activated in a rapidly reversible fashion during ligation of CD3/Ti by a process which involves prior phosphorylation; in vitro exposure of activated 43-kDa MAP-2 kinase (MAP-K) to an immobilized phosphatase abrogated its kinase activity. We now show that a MAP-2K response could also be obtained during treatment with mAb to Ti and the specific PKC agonist, PMA. Although the kinetics of the former response was rapidly reversible, PMA elicited a more prolonged response. The dose responsiveness for PMA was similar to the requirements for PKC activation in intact lymphocytes. Moreover, as with PKC, we found that the CD3-induced MAP-2K response could be further enhanced by using a second layer cross-linking antibody. The specificity of CD3/Ti in the Jurkat cell response is demonstrated by the fact that OKT-11(CD2) and anti-CD4 mAb did not stimulate a MAP-2K response. It was also not possible to elicit a response in a Jurkat cell mutant that lacks surface expression of CD3 and Ti. The specificity of PKC in these events was further explored with the cell permeant diacylglycerol, 1-oleoyl-2-acetylglycerol, and the nonagonist phorbol ester, 4 alpha-phorbol 12,13-didecanoate: whereas the former was an effective inducer of the MAP-2K response, the latter failed to yield any stimulation. Prior exposure of Jurkat cells to 100 mM PMA for 24 h eliminated greater than 60% of the MAP-2K response during anti-CD3 treatment. This response could also be inhibited in dose-dependent fashion by prior treatment of Jurkat cells with the potent PKC inhibitor 1-(5-isoquinolinesulfonyl) 2-methylpiperazine dihydrochloride. Although a Ca2(+)-ionophore failed to synergize with PMA at inducing a MAP-2K response, depletion of extracellular Ca2+ by EGTA abrogated anti-CD3 responsiveness. The events culminating in MAP-2K activation were slightly inhibited in the presence of cholera toxin but not pertussis toxin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Complete T cell activation requires not only a first signal via TCR/CD3 engagement but also a costimulatory signal through accessory receptors such as CD2, CD28, or integrins. Focal adhesion kinase, pp125(FAK) (FAK), was previously shown to be localized in focal adhesions in fibroblasts and to be involved in integrin-mediated cellular activation. Although signaling through beta1- or beta3-integrins induces tyrosine phosphorylation of FAK, there has been no evidence that activation of T cells through the beta2-integrin, LFA-1, involves FAK. We report here that crosslinking of LFA-1 induces tyrosine phosphorylation of FAK in PHA-activated T cells. Moreover, cocrosslinking with anti-LFA-1 mAb and suboptimal concentration of anti-CD3 mAb markedly increases tyrosine phosphorylation of FAK in an antibody-concentration-dependent and time-kinetics-dependent manner compared with stimulation through CD3 alone, which correlates well with enhanced proliferation of PHA-activated T cells. Furthermore, LFA-1beta costimulation with CD3 induces tyrosine phosphorylation of Syk associated with FAK. These results indicate, for the first time, that signals mediated by LFA-1 can regulate FAK, suggesting that LFA-1-mediated T cell costimulation may be involved in T cell activation at least partially through FAK.  相似文献   

10.
The effects of short-term phorbol ester treatment of CHO cells that stably express 900 fmol of recombinant human serotonin 5-HT1A receptor/mg of protein on coupling to the inhibition of adenylyl cyclase and on phosphorylation of the receptor were studied. Pretreatment of cell monolayers with phorbol 12-myristate 13-acetate (PMA) caused a dose- and time-dependent shift of the half-maximal dose of serotonin (5-HT) required to inhibit membrane adenylyl cyclase (from IC50 approximately 100 nM to approximately 400 nM). This desensitization (shift in IC50) was rapid, occurring with 5 min of pretreatment and being maximal by 10-15 min; it was also dose-dependent, being half-maximal at approximately 300 nM PMA. Desensitization was also induced by sn-dioctanoylglycerol (DiC8) and blocked by the protein kinase C (PKC) inhibitors sphingosine and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). In detached permeabilized cells, PMA pretreatment caused a rapid phosphorylation of immunoprecipitated 5-HT1A receptors, with an approximately 3-4-fold increase that was maximal after 15 min and persisted for 90 min. The phosphorylation occurred at a similar dose of PMA as that which induced desensitization (half-maximal at approximately 300 nM, maximal at 500 nM to 1 microM), could be reproduced by pretreatment with the PKC activators DiC8 or phorbol 12,13-dibutyrate (PDBu), and could be blocked by the PKC inhibitors sphingosine or H-7. The stoichiometry of the phosphorylation was approximately 2 mol of [32P]ATP/mol of receptor, suggesting the involvement at least two of three putative PKC sites within the 5-HT1A receptor. The close concordance between the PKC-induced desensitization and phosphorylation suggests a potential causative link between these two effects of PKC on the human 5-HT1A receptor.  相似文献   

11.
In this study, we examined the effects of T cell activators on the regulation of protein kinase C (PKC) isozymes present in thymocytes. Using affinity-purified anti-PKC antisera, we determined that the major PKC isoforms in murine thymocytes are PKC beta and PKC epsilon. The CD4+/CD8+ thymocyte subset expressed high levels of both PKC beta and PKC epsilon, whereas the CD4-/CD8- subset expressed much less of both. PKC beta was down-regulated following treatment of thymocytes with phorbol 12-myristate acetate (PMA) (2 x 10(-8) M) or ionomycin (0.4 microM). In contrast, PMA did not induce the down-regulation of PKC epsilon. Ionomycin alone, however, induced PKC epsilon down-regulation, similar to its effect on PKC beta. Similar observations were made on a promonocytic cell line, U937, which expresses PKC alpha, PKC beta (Strulovici, B., Daniel-Issakani, S., Oto, E., Nestor, J., Jr., Chan, H., and Tsou, A.-P. (1989) Biochemistry 28, 3569-3576), and PKC epsilon. To facilitate the study of PKC beta and PKC epsilon, we established a Chinese hamster ovary cell line which expresses murine PKC epsilon in addition to endogenous PKC alpha and PKC beta. Both PKC isoforms (beta and epsilon) were mostly in particulate form. PMA treatment left the majority of immunoreactive PKC epsilon intact. By contrast, thrombin treatment caused the disappearance of particulate and cytosolic PKC epsilon (60% by 10 min and 80% by 1 h). PMA and thrombin promoted the down-regulation of PKC beta with similar kinetics (100% down-regulation by 3 h). These results indicate that: 1) thymocytes express PKC epsilon; and 2) this isozyme exhibits a novel form of regulation distinct from the other PKC isozymes.  相似文献   

12.
13.
Modulation of neurotransmitter-gated membrane ion channels by protein kinase C (PKC) has been the subject of a number of studies. However, less is known about PKC modulation of the serotonin type 3 (5-HT3) receptor, a ligand-gated membrane ion channel that can mediate fast synaptic transmission in the central and peripheral nervous system. Here, we show that PKC potentiated 5-HT3 receptor-mediated current in Xenopus oocytes expressing 5-HT3A receptors and mouse N1E-115 neuroblastoma cells. In addition, using a specific antibody directed to the extracellular N-terminal domain of the 5-HT3A receptor, treatment with the PKC activator, 4 beta-phorbol 12-myristate 13-acetate (PMA), significantly increased surface immunofluorescence. PKC also increased the amount of 5-HT3A receptor protein in the cell membrane without affecting the amount receptor protein in the total cell extract. The magnitude of PMA potentiation of 5-HT3A receptor-mediated responses is correlated with the magnitude of PMA enhancement of the receptor abundance in the cell surface membrane. PMA potentiation is unlikely to occur via direct phosphorylation of the 5-HT3A receptor protein since the potentiation was not affected by point mutation of each of the putative sites for PKC phosphorylation. However, preapplication of phalloidin, which stabilizes the actin polymerization, significantly inhibited PMA potentiation of 5-HT-activated responses in both N1E-115 cells and oocytes expressing 5-HT3A receptors. On the other hand, latrunculin-A, which destabilizes actin cytoskeleton, enhanced the PMA potentiation of 5-HT3A receptors. The observations suggest that PKC can modulate 5-HT3A receptor function and trafficking through an F-actin-dependent mechanism.  相似文献   

14.
The immunologic effects of bryostatin (Bryo), a PKC activator with antineoplastic activity, were assessed and compared to PMA. Bryo induced IL-2R expression on CD4+ and CD8+ human T lymphocytes with a dose response comparable to PMA. However, Bryo induced only a marginal proliferative response as compared with the vigorous response induced by PMA. Bryo mediated functional receptor expression because the proliferative response was enhanced by addition of rIL-2. Furthermore, the proliferative response was inhibited by the relatively specific Ca+, phospholipid-dependent protein kinase (PKC) inhibitor, H-7, indicating a role of PKC in Bryo-induced activation. Addition of the calcium ionophore, ionomycin, to Bryo-stimulated lymphocytes resulted in the production and secretion of IL-2 with a concomitant proliferative response. This effect of the calcium ionophore could be inhibited by cyclosporine with identical results obtained in PMA-stimulated cultures. A most intriguing finding was that Bryo could effectively antagonize PMA-induced T cell proliferation. Although this mechanism of inhibition is unclear, a discussion with respect to differential effects on potential intracellular PKC isoforms is provided. These studies indicated that Bryo has potent immunopotentiating properties that share some similar effects of the phorbol ester, PMA, but offers the additional property of modulating other phorbol ester effects on proliferation.  相似文献   

15.
Murine T cell differentiation antigen CD8 alpha (Lyt-2) is phosphorylated in vivo after phorbol 12-myristate 13-acetate (PMA) treatment of cells. Concanavalin A,dibutyryl cAMP and calcium ionophore are unable to stimulate phosphate incorporation into CD8 alpha. Depletion of cellular protein kinase C (PKC) by prolonged PMA treatment abolished this phosphorylation, suggesting that PKC is required for this effect. Using the amino acid sequence derived from cloning CD8 alpha, peptides encompassing both possible intracellular phosphorylation sites were made and used to test the ability of various kinases to phosphorylate CD8 alpha sequences. Only the proximal serine peptide was a kinase substrate, and of PKC, cAMP-dependent kinase and the multifunctional calcium/calmodulin-dependent kinase, only PKC was able to phosphorylate this peptide. These studies provide the first definitive evidence that CD8 alpha is a direct substrate of PKC.  相似文献   

16.
Recent studies have highlighted the existence of discrete microdomains at the cell surface that are distinct from caveolae. The function of these microdomains remains unknown. However, recent evidence suggests that they may participate in a subset of transmembrane signaling events. In hematopoietic cells, these low density Triton-insoluble (LDTI) microdomains (also called caveolae-related domains) are dramatically enriched in signaling molecules, such as cell surface receptors (CD4 and CD55), Src family tyrosine kinases (Lyn, Lck, Hck, and Fyn), heterotrimeric G proteins, and gangliosides (GM1 and GM3). Human T lymphocytes have become a well established model system for studying the process of phorbol ester-induced down-regulation of CD4. Here, we present evidence that phorbol 12-myristate 13-acetate (PMA)-induced down-regulation of the cell surface pool of CD4 occurs within the LDTI microdomains of T cells. Localization of CD4 in LDTI microdomains was confirmed by immunoelectron microscopy. PMA-induced disruption of the CD4-Lck complex was rapid (within 5 min), and this disruption occurred within LDTI microdomains. Because PMA is an activator of protein kinase C (PKC), we next evaluated the possible roles of different PKC isoforms in this process. Our results indicate that PMA induced the rapid translocation of cytosolic PKCs to LDTI microdomains. We identified PKCalpha as the major isoform involved in this translocation event. Taken together, our results support the hypothesis that LDTI microdomains represent a functionally important plasma membrane compartment in T cells.  相似文献   

17.
Neokyotorphin [TSKYR, hemoglobin alpha-chain fragment (137-141)] has previously been shown to enhance fibroblast proliferation, its effect depending on cell density and serum level. Here we show the dependence of the effect of neokyotorphin on cell type and its correlation with the effect of protein kinase A (PKA) activator 8-Br-cAMP, but not the PKC activator 4beta-phorbol 12-myristate, 13-acetate (PMA). In L929 fibroblasts, the proliferative effect of neokyotorphin was suppressed by the Ca2+ L-type channel inhibitors verapamil or nifedipine, the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, kinase inhibitors H-89 (PKA), KN-62 (Ca2+/calmodulin-dependent kinase II) and PD98059 (mitogen-activated protein kinase). The proliferative effect of 8-Br-cAMP was also suppressed by KN-62 and PD98059. PKC suppression (downregulation with PMA or inhibition with bisindolylmaleimide XI) did not affect neokyotorphin action. The results obtained point to a cAMP-like action for neokyotorphin.  相似文献   

18.
Mechanisms of T cell activation by the calcium ionophore ionomycin   总被引:4,自引:0,他引:4  
We have investigated signaling mechanisms that may underlie the T cell mitogenic properties of the Ca2+ ionophore ionomycin. Ionomycin induces highly purified resting human T cells to proliferate in the presence of monocytes with accompanying IL-2R expression and IL-2 synthesis. Treatment of T cells with ionomycin triggers the hydrolysis of phosphoinositides, as evidenced by the accumulation of the hydrolytic by-products phosphatidic acid and inositol phosphates. Ionomycin also induces the activation of protein kinase C (PKC), as demonstrated by the auto-phosphorylation of PKC and the phosphorylation of the PKC target proteins CD4 and CD8. Ionomycin synergizes with PMA in enhancing the activation of PKC. It is concluded that, in addition to its putative activation of Ca2+/calmodulin-dependent signaling pathways, ionomycin induces the hydrolysis of phosphoinositides and the activation of PKC in human T cells. The synergy of ionomycin with phorbol esters in triggering T cell activation may relate, at least in part, to enhanced activation of PKC.  相似文献   

19.
20.
Optimal proliferation of T cells although initiated via ligation of the CD3/TCR complex requires additional stimulation resulting from adhesive interactions between costimulatory receptors (R) on T cells and their counter-R on APC. At least four distinct adhesion molecules (counter-R) present on APC, B7, ICAM-1 (CD54), LFA-3 (CD58), and VCAM-1 have been individually shown to costimulate T cell activation. Because some of these molecules may be expressed simultaneously on APC, it has been difficult to examine relative contributions of individual counter-R during the induction of T cell proliferation. We have produced soluble IgC gamma 1 fusion chimeras (receptor globulins or Rg) of B7, ICAM-1, LFA-3, and VCAM-1 and compared their relative abilities to costimulate proliferation of resting or Ag-primed CD4+ T cells. When co-immobilized with mAb directed at TCR alpha beta or CD3 but not CD2 or CD28, each Rg induced proliferation of both resting and Ag-primed CD4+ cells. In contrast, similarly co-immobilized CD7 Rg or ELAM-1 Rg were ineffective. Resting CD4+ T cells produced more IL-2, expressed significantly higher levels of IL-2R alpha, and proliferated more efficiently when costimulated with either ICAM-1 Rg or VCAM-1 Rg than with B7 Rg or LFA-3 Rg. CD4+ CD45RO+ memory T cells proliferated more vigorously in response to the costimulation by each of the four Rg than CD4+ CD45RA+ naive T cells. In contrast with the behavior of resting CD4+ T cells, proliferation of Ag-preactivated CD4+ T cells was most efficient when costimulated by B7 Rg. The costimulatory effect of LFA-3 Rg on Ag-primed CD4+ T cells was weaker than that of B7 Rg but was significantly greater than that of either ICAM-1 Rg or VCAM-1 Rg. These results suggest that resting and Ag-primed CD4+ T cells preferentially respond by proliferation to different costimulatory counter-R. ICAM-1 and VCAM-1 may be involved in the initiation of proliferation of Ag-responsive T cells, and B7 and LFA-3 may facilitate sustained proliferation of Ag-primed T cells. The cumulative costimulation by the above counter-R may facilitate optimal expression of various regulatory and effector functions of T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号