首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reading skill is suggested to be related to phonological processing ability and polyunsaturated fatty acids (PUFAs). Here we investigated whether fatty acids (FAs) are related to phonological processing, whether the relations between PUFAs and reading generalize to other FAs, whether these relations are mediated by phonological processing, and whether relations of FAs are specific for language-related functions. Blood samples of 49 ten-year-old children with oral clefts were collected for FA proportion analysis in serum cholesteryl esters and phospholipids. On the same day, they performed tasks of phonological processing, reading, and both verbal and nonverbal intelligence. Sequential regression analyses (adjusted for age, gender, and cleft type) showed that phonological processing was inversely related to myristic acid in phospholipids and positively related to eicosapentaenoic acid in cholesteryl esters. Reading was inversely related to palmitoleic and gammalinolenic acids in phospholipids. The relations between FAs and reading were not mediated by phonological processing and FAs related only to language-related functions.  相似文献   

2.
First, to analyze the interactions among fatty acids (FAs) from diet, plasma and subcutaneous and visceral adipose tissue (AT), and second, the relationship among FAs from these different sources and obesity‐related alterations in extreme obesity. We studied 20 extreme obese subjects. A food‐frequency questionnaire was used to determine the FA intakes. Serum and AT (subcutaneous and visceral) FA concentrations were determined by gas chromatography. Cardiometabolic risk parameters were assessed. Principal factor analysis was performed to define specific FA factors in the metabolic alterations. We found important associations among diet, plasma, and AT FA and cardiometabolic parameters. In this regard, it is interesting to highlight the negative associations between plasma cholesterol and dietary n‐3 FA. In the subcutaneous depot, as occurred in plasma, n‐6 and polyunsaturated FAs (PUFA) were negatively associated with triacylglycerols (TGs). Factor analysis revealed TGs as the unique cardiovascular risk parameter appearing in the first factor (F1), together with n‐6 (load factor = 0.94) and PUFA (0.91). Besides, n‐3 from diet and plasma appeared in the third factor inversely related to cholesterol, low‐density lipoprotein cholesterol (LDL‐c), and insulin. In an opposite way, dietary and AT trans FAs and saturated FA (SFA) were associated to an increase of the metabolic risk. We have shown, for the first time, the importance of n‐6 and PUFAs composition as protective factors against metabolic alterations in extreme obese subjects. These findings support current dietary recommendations to increase PUFA intakes and restrict saturated and trans FA intakes even in extreme obesity.  相似文献   

3.
A major source of energy during lactation in mammals is provided through the mobilization of blubber fatty acids (FAs). We investigated the extent to which FAs were mobilized to support both maternal metabolic requirements and milk production in the Weddell seal and how this was reflected in the FA composition of the pup's blubber at the end of lactation (EL). FA composition of postpartum female blubber was similar in the 2 yr of study (2002 and 2003) but differed markedly by EL. Pup blubber FAs (at EL) were also different between years and did not match that of the mother's milk or blubber. Milk FA composition changed during lactation, which may have been a reflection of an increase in pup energy demands at different stages of development. In addition, there was evidence of feeding by some females during lactation, with higher levels of some FAs in the milk than in the blubber. Our results indicate that differential mobilization of FAs occurred in lactating Weddell seals and that this was related to total body lipid stores at postpartum. Furthermore, growing pups did not store FAs unmodified, providing evidence that selective use does occur and also that using FA composition to elucidate dietary sources may be problematic in growing individuals.  相似文献   

4.
Elevated concentration of plasma non-esterified fatty acids (NEFA) is now recognized as a key factor in the onset of insulin-resistance and type 2 diabetes mellitus. During fasting, circulating NEFAs arise from white adipose tissue (WAT) as a consequence of lipolysis from stored triacylglycerols. However, a significant part of these FAs (30-70%) is re-esterified within the adipocyte, so that a recycling occurs and net FA output is much less than < true > lipolysis. Indeed, a balance between two antagonistic processes, lipolysis and FA re-esterification, controls the rate of net FA release from WAT. During fasting, re-esterification requires glyceroneogenesis defined as the de novo synthesis of glycerol-3-P from pyruvate, lactate or certain amino acids. The key enzyme in this process is the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C; EC 4.1.1.32). Recent advance has stressed the role of glyceroneogenesis and of PEPCK-C in FA release from WAT. Results indicate that glyceroneogenesis is indeed important to lipid homeostasis and that a disregulation in this pathway may have profound pathophysiological effects. The present review focuses on the regulation of glyceroneogenesis and of PEPCK-C gene expression and activity by FAs, retinoic acids, glucocorticoids and the hypolipidemic class of drugs, thiazolidinediones.  相似文献   

5.
Several studies demonstrate the importance of essential fatty acids (EFAs), and the long chain polyunsaturated FA docosahexaenoic acid (DHA), on cognition and brain development. The objective of this study was to investigate the relationship between whole-blood FAs and executive function in children from Northern Ghana. A total of 307, 2-to-6-year-old children attempted the dimensional change card sort (DCCS) task to assess executive function, and dried blood spot samples were collected and analyzed for FA content. Significant differences in mean % total whole-blood fatty acids were observed between children who could not follow directions on the DCCS test (49.8% of the sample) and those who could (50.2% of the sample). Positive associations with DCCS performance were observed for DHA (β=0.25, P=.06), total n-3 (β=0.17, P=.06) and dihomo-gamma-linolenic acid (DGLA; β=0.60, P=.06). Children with the highest levels of total n-3 and DHA were three and four times, respectively, more likely to pass at least one condition of the DCCS test of executive function than those with the lowest DHA levels. The results of this study indicate an association between n-3 FAs and high-level cognitive processes in children two to six years of age, providing impetus for further studies into possible interventions to improve EFA status of children in developing countries.  相似文献   

6.
Lipoprotein lipase (LPL) is the only known enzyme in the capillary endothelium of peripheral tissues that hydrolizes plasma triglycerides and provides fatty acids (FAs) for their subsequent tissue uptake. Previously, we demonstrated that mice that express LPL exclusively in muscle develop essentially normal fat mass despite the absence of LPL and the deprivation of nutritionally derived FAs in adipose tissue (AT). Using this mouse model, we now investigated the metabolic response to LPL deficiency in AT that enables maintenance of normal AT mass. We show that the rate of FA production was 1.8-fold higher in LPL-deficient AT than in control AT. The levels of mRNA and enzymatic activities of important enzymes involved in FA and triglyceride biosynthesis were induced concomitantly. Increased plasma glucose clearing and (14)C-deoxyglucose uptake into LPL-deficient mouse fat pads indicated that glucose provided the carbon source for lipid synthesis. Leptin expression was decreased in LPL-deficient AT. Finally, the induction of de novo FA synthesis in LPL-deficient AT was associated with increased expression and processing of sterol regulatory element binding protein 1 (SREBP-1), together with an increase in INSIG-1 expression. These results suggest that in the absence of LPL in AT, lipogenesis is activated through increased SREBP-1 expression and processing triggered by decreased availability of nutrition-derived FAs, elevated insulin, and low leptin levels.  相似文献   

7.
Differences in lipid metabolism associate with age‐related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro‐inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age‐associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly‐ and mono‐unsaturated FAs increase with age. Circulating TNF‐α and IL‐6 concentrations increased with age, whereas IL‐10 and TGF‐β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF‐β1 concentrations, and higher C16:0 were associated with higher TNF‐α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro‐inflammatory cytokines in response to phorbol myristate acetate‐induced differentiation through ceramide‐dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro‐resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti‐inflammatory macrophages through metabolic reprogramming.  相似文献   

8.
Short- and medium-chain-length fatty acids (FAs) are important constituents of a wide array of natural products. Branched and straight short-chain-length FAs originate from branched chain amino acid metabolism, and serve as primers for elongation in FA synthase-like reactions. However, a recent model proposes that the one-carbon extension reactions that utilize 2-oxo-3-methylbutyric acid in leucine biosynthesis also catalyze a repetitive one-carbon elongation of short-chain primers to medium-chain-length FAs. The existence of such a mechanism would require a novel form of regulation to control carbon flux between amino acid and FA biosynthesis. A critical re-analysis of the data used to support this pathway fails to support the hypothesis for FA elongation by one-carbon extension cycles of alpha-ketoacids. Therefore, we tested the hypothesis experimentally using criteria that distinguish between one- and two-carbon elongation mechanisms: (a) isotopomer patterns in terminal carbon atom pairs of branched and straight FAs resulting from differential labeling with [(13)C]?cetate; (b)(13)C]threonine labeling patterns in odd- and even chain length FAs; and (c) differential sensitivity of elongation reactions to inhibition by cerulenin. All three criteria indicated that biosynthesis of medium-chain length FAs is mediated primarily by FA synthase-like reactions.  相似文献   

9.
Adipose-derived mesenchymal stem cells (ADSCs) are useful cell model to study adipogenesis and energy metabolism. However, the biological characteristics of bovine ADSCs (bADSCs) remain unclear. This study aimed to isolate and identify bADSCs and further investigate fatty acid (FA)-related gene expression and composition of FAs during adipogenesis. The growth curve showed the bADSCs of P5 cells had rapid proliferation superior to P10–P50. The colony formation assay showed colony number of P5 cells was higher than that of P50 cells (51.67 ± 3.06 vs 35.67 ± 6.43, P < 0.05). The immunofluorescence showed that bADSCs were positive for CD13, CD44, CD49d, CD90, CD105, and Vimentin while negative for CD34. The multipotential towards adipocyte, osteocyte, and chondrocyte was confirmed by specific histological staining and lineage gene expression. During adipogenic induction, the genes related to lipogenesis and lipolysis were assessed by real-time PCR and the FA composition was detected by GC-MS. Expression of lipogenesis-related genes showed coordinated regulation as peaking on day 7 and declining until induction ended, including PPARγ, SREBP1, ACC1, FAS, ELOVL6, SCD1, and FABP4. FA deposition-related genes (DGAT1 and ACAT1) increased until day 14. Lipolysis genes (CPT-1A, VLCAD, and ACO) showed a variant expression pattern. The profile of FAs showed that proportion of the FAs (C4–C15, ≥ C22) increased, but proportion of long-chain fatty acids (C16–C20) reduced after induction. And saturated FAs (SFA) decreased while monounsaturated FAs (MUFA) and polyunsaturated FAs (PUFA) increased during adipogenesis. These data suggest that bADSCs possess the characteristics of mesenchymal stem cells and have active de novo lipogenesis (DNL) and desaturation of FAs during adipogenesis.  相似文献   

10.
The fatty acid (FA) composition of Demospongiae species from the Sea of Okhotsk was studied. Fifteen sponge species were investigated for the first time, and the previously studied species Desmacella rosea and Myxilla incrustans were reexamined for their FA composition. Gas chromatography-mass spectrometry revealed 150 different fatty acids, of which 15 have not been identified in sponge lipids previously. The relative content of saturated FAs varied from 7.6 in Melonachora kobjakovae to 29.6% in Amphilectus digitata, with an average of 14.6% of total FAs. The relative content of monoenic FAs ranged from 12.8 in T. dirhaphis to 27.0% in Polymastia sp., with an average of 20.6% of total FAs. Non-methylen-interrupted, primarily unsaturated Δ5,9-FAs contributed a significantly to the amount of polyunsaturated fatty acids of sponges; this being a distinguishing feature of the FA composition of the investigated group of organisms.  相似文献   

11.
Nuclear magnetic resonance (NMR) spectroscopy was employed to investigate the effect of infection with Taenia crassiceps cysticerci on the lipid profile of mouse liver. Chloroform/methanol extracts of livers from infected mice showed lower concentrations of phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, total glycerophospholipid, triacylglycerol, total fatty acid (FA) and all measured FA components than those from controls. Furthermore, the ratios obtained on dividing concentrations of the FA components by that of total FA demonstrate that the concentration decreases caused by infection are less for polyunsaturated fatty acids (FAs) than for other FAs. Extracts of T. crassiceps displayed a similar lipid profile to that of host liver but contained a lower lipid content and a shorter average FA chain length.  相似文献   

12.
The aim of the present study was to examine whether pretreatment with different fatty acids, as well as the liver X receptor (LXR) agonist T0901317, could modify metabolic switching of human myotubes. The n-3 FA eicosapentaenoic acid (EPA) increased suppressibility, the ability of glucose to suppress FA oxidation. Substrate-regulated flexibility, the ability to increase FA oxidation when changing from a high glucose, low fatty acid condition (“fed”) to a high fatty acid, low glucose (“fasted”) condition, was increased by EPA and other n-3 FAs. Adaptability, the capacity to increase FA oxidation with increasing FA availability, was enhanced after pretreatment with EPA, linoleic acid (LA), and palmitic acid (PA). T0901317 counteracted the effect of EPA on suppressibility and adaptability, but it did not affect these parameters alone. EPA per se accumulated less, however, EPA, LA, oleic acid, and T0901317 treatment increased the number of lipid droplets (LD) in myotubes. LD volume and intensity, as well as mitochondrial mass, were independent of FA pretreatment. Microarray analysis showed that EPA regulated more genes than the other FAs and that specific pathways involved in carbohydrate metabolism were induced only by EPA. The present study suggests a favorable effect of n-3 FAs on skeletal muscle metabolic switching and glucose utilization.  相似文献   

13.
In an analysis of 47 aerobic myxobacterial strains, representing 19 genera in suborders Cystobacterineae, Nannocystineae, Sorangiineae, and a novel isolate, "Aetherobacter" SBSr008, an enormously diverse array of fatty acids (FAs) was found. The distribution of straight-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) supports the reported clustering of strains in the phylogenetic tree based on 16S rRNA genes. This finding additionally allows the prediction and assignment of the novel isolate SBSr008 into its corresponding taxon. Sorangiineae predominantly contains larger amounts of SCFA (57 to 84%) than BCFA. On the other hand, Cystobacterineae exhibit significant BCFA content (53 to 90%), with the exception of the genus Stigmatella. In Nannocystineae, the ratio of BCFA and SCFA seems dependent on the taxonomic clade. Myxobacteria could also be identified and classified by using their specific and predominant FAs as biomarkers. Nannocystineae is remarkably unique among the suborders for its absence of hydroxy FAs. After the identification of arachidonic (AA) FA in Phaselicystidaceae, eight additional polyunsaturated fatty acids (PUFAs) belonging to the omega-6 and omega-3 families were discovered. Here we present a comprehensive report of FAs found in aerobic myxobacteria. Gliding bacteria belonging to Flexibacter and Herpetosiphon were chosen for comparative analysis to determine their FA profiles in relation to the myxobacteria.  相似文献   

14.
Producing unusual fatty acids (FAs) in crop plants has been a long-standing goal of green chemistry. However, expression of the enzymes that catalyze the primary synthesis of these unusual FAs in transgenic plants typically results in low levels of the desired FA. For example, seed-specific expression of castor (Ricinus communis) fatty acid hydroxylase (RcFAH) in Arabidopsis (Arabidopsis thaliana) resulted in only 17% hydroxy fatty acids (HFAs) in the seed oil. In order to increase HFA levels, we investigated castor phospholipid:diacylglycerol acyltransferase (PDAT). We cloned cDNAs encoding three putative PDAT enzymes from a castor seed cDNA library and coexpressed them with RcFAH12. One isoform, RcPDAT1A, increased HFA levels to 27%. Analysis of HFA-triacylglycerol molecular species and regiochemistry, along with analysis of the HFA content of phosphatidylcholine, indicates that RcPDAT1A functions as a PDAT in vivo. Expression of RcFAH12 alone leads to a significant decrease in FA content of seeds. Coexpression of RcPDAT1A and RcDGAT2 (for diacylglycerol acyltransferase 2) with RcFAH12 restored FA levels to nearly wild-type levels, and this was accompanied by a major increase in the mass of HFAs accumulating in the seeds. We show the usefulness of RcPDAT1A for engineering plants with high levels of HFAs and alleviating bottlenecks due to the production of unusual FAs in transgenic oilseeds.  相似文献   

15.
Both attention deficit hyperactivity disorder (ADHD) and dyslexia are suggested to co-occur with altered fatty acid (FA) metabolism, but it is unknown how FAs are associated with the cognitive domains that characterize these disorders. In the project DyAdd, we investigated the associations between FAs in serum phospholipids and phonological processing, reading, spelling, arithmetic, executive functions, and attention. Healthy controls (n=36), adults with ADHD (n=26), dyslexia (n=36), or both (n=9) were included in the study. FAs included saturated, monounsaturated, total polyunsaturated, n-3, and n-6 FAs, together with n-6/n-3, AA/EPA, and LA/ALA ratios. When all the study subjects were included in the analyses, especially polyunsaturated FAs (PUFAs) were positively associated with cognition, but reading was least associated with FAs. These associations were modulated by gender, intelligence, n-3 PUFA intake, and group. Accordingly, within the ADHD group, only few associations emerged with PUFAs, n-6 PUFAs, and cognitive domains, whereas in the dyslexia group the more prevalent associations appeared with PUFAs and n-3 PUFAs.  相似文献   

16.
Major depressive disorders (MDD) and cardiovascular disease are mutually associated. They share signs and symptoms of the "metabolic syndrome". Two observations that may be causally related with the metabolic syndrome and therefore with both MDD and cardiovascular disease are a decrease in omega-3 polyunsaturated fatty acids (PUFAs) and a rise in plasma homocysteine (tHcy) levels. Both the rise in tHcy and the decrease in omega-3 PUFAs may be associated with enhanced lipid peroxidation. We exploratively studied 44 randomly chosen patients out of a cohort of 134 patients with the recurrent form of MDD (MDD-R). We measured tHcy levels together with saturated FAs, monounsaturated fatty acids (MUFAs) and PUFAs of the omega-3, omega-6 and omega-9 series in plasma and erythrocytes. Levels were compared with laboratory reference values. The main findings were a decrease in the erythrocytes of C22:5omega-3, C22:6omega-3, C24:1omega-9 and C20:3omega-9 and in the plasma a decrease in C24:1omega-9 and C20:3omega-9. The only significant association we found was between the total of omega-6 fatty acids and plasma tHcy. The FA alterations were found in patients although most of them were clinically recovered, suggesting that the alterations may represent a biological" trait" marker for recurrent depression.  相似文献   

17.
These experiments tested the hypothesis that fatty acids (FAs) that drive cholesterol esterification also enhance sterol secretion and were undertaken using a mouse model where lipoprotein-cholesterol output by the liver could be assessed in vivo. The turnover of sterol in the animals was kept constant ( approximately 160 mg/d per kg) while the liver was enriched with the single FAs 8:0, 14:0, 18:1, or 18:2. Under these conditions, the steady-state concentration of cholesteryl ester in the liver varied 6-fold, from 1.2 to 7.9 mg/g, and the expansion of this pool was directly related to the specific FA enriching the liver (FA 18:1>18:2>8:0> 14:0). Secretion of lipoprotein-cholesterol varied 5-fold and was a linear function of the concentration of cholesteryl ester in the liver. These studies demonstrate that unsaturated FAs drive the esterification reaction and enhance lipoprotein cholesterol secretion by the liver under conditions where cholesterol balance across this organ is constant. Thus, individual FAs interact with cholesterol to profoundly regulate both the output and uptake of sterol by the liver, and these effects are articulated through the esterification reaction.  相似文献   

18.
Quantitative analysis of fatty acids (FAs) is an important area of analytical biochemistry. Ultra high sensitivity FA analysis usually is done with gas chromatography of pentafluorobenzyl esters coupled to an electron-capture detector. With the popularity of electrospray ionization (ESI) mass spectrometers coupled to liquid chromatography, it would be convenient to develop a method for ultra high sensitivity FA detection using this equipment. Although FAs can be analyzed by ESI in negative ion mode, this method is not very sensitive. In this study, we demonstrate a new method of FA analysis based on conversion of the carboxylic acid to an amide bearing a permanent positive charge, N-(4-aminomethylphenyl)pyridinium (AMPP) combined with analysis on a reverse-phase liquid chromatography column coupled to an ESI mass spectrometer operating in positive ion mode. This leads to an ∼60,000-fold increase in sensitivity compared with the same method carried out with underivatized FAs. The new method is about 10-fold more sensitive than the existing method of gas chromatography/electron-capture mass spectrometry of FA pentafluorobenzyl esters. Furthermore, significant fragmentation of the precursor ions in the nontag portion improves analytical specificity. We show that a large number of FA molecular species can be analyzed with this method in complex biological samples such as mouse serum.  相似文献   

19.
In project DyAdd, we compared the fatty acid (FA) profiles of serum phospholipids in adults with attention deficit hyperactivity disorder (ADHD) (n=26), dyslexia (n=36), their comorbid combination (n=9), and healthy controls (n=36). FA proportions were analyzed in a 2×2 design with Bonferroni corrected post hoc comparisons. A questionnaire was used to assess dietary fat quality and use of supplements. Results showed that ADHD and dyslexia were not associated with total saturated FAs, monounsaturated FAs, or n-3 polyunsaturated FAs (PUFAs). However, those with ADHD had elevated proportions of total n-6 PUFAs (including γ-linolenic and adrenic acids) as compared to those without ADHD. Dyslexia was related to a higher proportion of monounsaturated nervonic acid and a higher ratio of n-6/n-3 PUFAs. Among females none of the associations were significant. However in males, all the original associations observed in all subjects remained and ADHD was associated with elevated nervonic acid and n-6/n-3 PUFA ratio like dyslexia. Controlling for poorly diagnosed reading difficulties, education, dietary fat quality, or use of FA supplements did not generally remove the originally observed associations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号