首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Erythropoietin (EPO) is known to be a hematopoietic growth factor and a regulator of red blood cell production. Recently, EPO has also been reported to function as a tissue-protective cytokine and as an angiogenesis promoting factor. EPO is mainly regulated by hypoxia through the action of hypoxia inducible factors (HIF-1α and HIF-2α). The localization of the EPO protein and the HIF-2α protein were immunohistochemically analyzed in developing porcine embryos. Both proteins were localized in developing cartilage tissue. HIF-2α and EPO protein were expressed in the peripheral chondrocytes of cartilage anlagen, in the perichondrium and in the cell condensations that will eventually differentiate into cartilage tissue. The results of this study reveal that EPO might play a role as a survival factor or as a mitogen in developing cartilage tissue. Moreover, the presence of both proteins at the same locations supports the hypothesis that EPO expression is regulated by HIF-2α.  相似文献   

4.
The objective of this investigation was to investigate the relationship between the energy status of epiphyseal chondrocytes of the chick growth cartilage and the development of mineralization. A microfluorimetric scanning technique was used to measure the reduced pyridine nucleotide content of transverse sections of freeze-trapped cartilage; these measurements were related to tissue structure by scanning electron microscopy. The results of this study show that the energy status of cells in the hypertrophic region of the growth cartilage is more complex than was previously believed. In hypertrophic cartilage, most chondrocytes are in a reduced state. However, in the early hypertrophic region, the vascular channels that penetrate the cartilage from the metaphysis exert a profound local effect on the energy metabolism of perivascular chondrocytes. Thus, around each of the channels, there exists a zone of chondrocytes about 40-60 micron wide which exhibits a low fluorescence yield. The fluorescence level suggests that these perivascular cells have a higher level of oxidative metabolism than hypertrophic chondrocytes that are a distance (greater than 150 micron) from the vascular channels. This finding, in conjunction with our earlier observation that mineralization is first seen in the perivascular region, leads us to the conclusion that mineralization is associated with cellular oxidative activity. We now reject the long-held concept that in cartilage the development of mineralization is entirely due to tissue hypoxia.  相似文献   

5.
6.
The chondrocyte is solely responsible for synthesis and maintenance of the resilient articular cartilage matrix that gives this load-bearing tissue its mechanical integrity. When the differentiated cell phenotype is lost, the matrix becomes compromised and cartilage function begins to fail. We have recently shown that hypoxia promotes the differentiated phenotype through hypoxia-inducible factor 2alpha (HIF-2alpha)-mediated SOX9 induction of the main matrix genes. However, to date, only a few genes have been shown to be SOX9 targets, while little is known about SOX9-independent regulators. We therefore performed a detailed microarray study to address these issues. Analysis involved 35 arrays on chondrocytes obtained from seven healthy, non-elderly human cartilage samples. Genes were selected that were down-regulated with serial passage in culture (as this causes loss of the differentiated phenotype) and subsequently up-regulated in hypoxia. The importance of key findings was further probed using the technique of RNA interference on these human articular chondrocytes. Our results show that hypoxia has a broader beneficial effect on the chondrocyte phenotype than has been previously described. Of special note, we report new hypoxia-inducible and SOX9-regulated genes, Gdf10 and Chm-I. In addition, Mig6 and InhbA were induced by hypoxia, predominantly via HIF-2alpha, but were not regulated by SOX9. Therefore, hypoxia, and more specifically HIF-2alpha, promotes both SOX9-dependent and -independent factors important for cartilage homeostasis. HIF-2alpha may therefore represent a new and promising therapeutic target for cartilage repair.  相似文献   

7.
In cartilage, chondrocytes are responsible for the biogenesis and maintenance of the extracellular matrix (ECM) composed of proteins, glycoproteins and proteoglycans. Various cellular stresses, such as hypoxia, nutrient deprivation, oxidative stress or the accumulation of advanced glycation end products (AGEs) during aging, but also translational errors or mutations in cartilage components or chaperone proteins affect the synthesis and secretion of ECM proteins, causing protein aggregates to accumulate in the endoplasmic reticulum (ER). This condition, referred to as ER stress, interferes with cartilage cell homeostasis and initiates the unfolded protein response (UPR), a rescue mechanism to regain cell viability and function. Chronic or irreversible ER stress, however, triggers UPR-initiated cell death. Due to unresolved ER stress in chondrocytes, diseases of the skeletal system, such as chondrodysplasias, arise. ER stress has also been identified as a contributing factor to the pathogenesis of cartilage degeneration processes such as osteoarthritis (OA). This review provides current knowledge about the biogenesis of ECM components in chondrocytes, describes possible causes for the impairment of involved processes and focuses on the ER stress-induced cell death in articular cartilage during OA. Targeting of the ER stress itself or intervention in UPR signaling to reduce death of chondrocytes may be promising for future osteoarthritis therapy.  相似文献   

8.
In a chronically hypoxic tissue such as cartilage, adaptations to hypoxia do not merely include cell survival responses, but also promotion of its specific function. This review will focus on describing such hypoxia-mediated chondrocyte function, in particular in the permanent articular cartilage. The molecular details of how chondrocytes sense and respond to hypoxia and how this promotes matrix synthesis have recently been examined, and specific manipulation of hypoxia-induced pathways is now considered to have potential therapeutic application to maintenance and repair of articular cartilage.  相似文献   

9.
High mobility group box 1 protein (HMGB1) is a chromatin protein that has a dual function as a nuclear factor and as an extracellular factor. Extracellular HMGB1 released by damaged cells acts as a chemoattractant, as well as a proinflammatory cytokine, suggesting that HMGB1 is tightly connected to the process of tissue organization. However, the role of HMGB1 in bone and cartilage that undergo remodeling during embryogenesis, tissue repair, and disease is largely unknown. We show here that the stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. We analyzed the skeletal development of Hmgb1(-/-) mice during embryogenesis and found that endochondral ossification is significantly impaired due to the delay of cartilage invasion by osteoclasts, osteoblasts, and blood vessels. Immunohistochemical analysis revealed that HMGB1 protein accumulated in the cytosol of hypertrophic chondrocytes at growth plates, and its extracellular release from the chondrocytes was verified by organ culture. Furthermore, we demonstrated that the chondrocyte-secreted HMGB1 functions as a chemoattractant for osteoclasts and osteoblasts, as well as for endothelial cells, further supporting the conclusion that Hmgb1(-/-) mice are defective in cell invasion. Collectively, these findings suggest that HMGB1 released from differentiating chondrocytes acts, at least in part, as a regulator of endochondral ossification during osteogenesis.  相似文献   

10.
Mesenchymal stem cell therapy to rebuild cartilage   总被引:2,自引:0,他引:2  
Disorders affecting cartilage touch almost the whole population and are one of the leading causes of invalidity in adults. To repair cartilage, therapeutic approaches initially focused on the implantation of autologous chondrocytes, but this technique proved unsatisfactory because of the limited number of chondrocytes obtained at harvest. The discovery that several adult human tissues contain mesenchymal stem cells (MSCs) capable of differentiating into chondrocytes raised the possibility of injecting MSCs to repair cartilages. The important data published recently on the factors controlling chondrocyte commitment must be thoroughly considered to make further progress towards this therapeutic approach. The potential application of MSC therapy provides new hope for the development of innovative treatments for the repair of cartilage disorders.  相似文献   

11.
Particular results of autologous osteoblasts preparation from patient's bone marrow and autologous chondrocytes from cartilage, both for therapeutic application are given. Osteoblastic cells were cultivated from fresh bone marrow in the presence of dexamethasone in alpha MEM medium containing 10% of patient's and 10% of fetal bovine sera and other necessary additives without any cytokine stimuli. Alkaline phosphatase cell surface activity was used as a marker for quick osteoblastic phenotype confirmation. Autologous chondrocytes were enzymatically separated from fresh knee cartilage. Pieces of cartilage, 2 mm3 in volume, were sufficient for live cellular graft preparation. Viability of chondrocytes obtained by this approach was more than 90%. In both cases, in osteoblasts as well as in chondrocytes, the amount of cells obtained during the 4 week culture, was sufficient for clinical use. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
14.
Vascular endothelial growth factor (Vegf) was previously shown to be expressed specifically in the condylar cartilage of temporomandibular joint-osteoarthritis (TMJ-OA) model rats. Here we demonstrate for the first time that hypoxia-inducible factor-1α (Hif-1α) is activated in mature chondrocytes of temporomandibular joint-osteoarthritis (TMJ-OA) model rat by mechanical overload, and that activated Hif-1 in chondrocytes can induce osteoclastogenesis via repression of osteoprotegerin (Opg) expression.In rat TMJs, degeneration of the condylar cartilage became prominent in proportion to the duration of overloading. Hif-1α expression was observed specifically in mature and hypertrophic chondrocytes, and Hif-1α-positivity, level of Vegf expression, and tartrate-resistant acid phosphatase (TRAP)-positive cell numbers all increased in the same manner. When ATDC5 cells induced differentiation by insulin were cultured under hypoxia, Hif-1α induction was observed in mature stage, but not in immature stage. Inductions of Hif-1-target genes showed a similar expression pattern. In addition, expression of Opg decreased in hypoxia, and Hif-1α played a role, in part, in its regulation.  相似文献   

15.
Transforming growth factor beta (TGFβ) is a growth factor with many faces. In our osteoarthritis (OA) research we have found that TGFβ can be protective as well as deleterious for articular cartilage. We postulate that the dual effects of TGFβ on chondrocytes can be explained by the fact that TGFβ can signal via different receptors and related Smad signaling routes. On chondrocytes, TGFβ not only signals via the canonical type I receptor ALK5 but also via the ALK1 receptor. Notably, signaling via ALK5 (Smad2/3 route) results in markedly different chondrocyte responses than ALK1 signaling (Smad1/5/8), and we postulate that the balance between ALK5 and ALK1 expression on chondrocytes will determine the overall effect of TGFβ on these cells. Importantly, signaling via ALK1, but not ALK5, stimulates MMP-13 expression by chondrocytes. In cartilage of ageing mice and in experimental OA models we have found that the ALK1/ALK5 ratio is significantly increased, favoring TGFβ signaling via the Smad1/5/8 route, changes in chondrocyte differentiation and MMP-13 expression. Moreover, human OA cartilage showed a significant correlation between ALK1 and MMP-13 expression. In this paper we summarize concepts in OA, its link with ageing and disturbed growth factor responses, and a potential role of TGFβ signaling in OA development.  相似文献   

16.
17.
18.
19.
20.
Normal rabbit-articular chondrocytes secrete very small amounts of degradative enzymes in culture. Rabbit peritoneal macrophages, when activated with lipopolysaccharides, release a factor in the medium which stimulates the chondrocytes to produce significantly high levels of collagenase and other neutral protease for 2-3 days. The soluble mediator from macrophages appears to be a polypeptide with a molecular weight of 13000-15000 and can be inactivated by short-term treatment with trypsin or pronase. The enzyme-synthesis by chondrocytes can be stimulated to the same extent by repeated addition of the macrophage-medium. The metabolism of chondrocytes is altered due to the presence of this mediator. The cellular proliferation is diminished, while the rates of degradation as well as biosynthesis of the matrix are increased. These studies suggest the possibility that in the conditions such as osteoarthritis, where the synovial cells may not play an active role in cartilage degradation, the proteases can be produced by the cartilage cells themselves after the stimulation by macrophage-derived mediators. These intrinsic enzymes may be responsible for the slow, but progressive degeneration of cartilage tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号