首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C12O) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C23O) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 3, 2005, pp. 298–302.Original Russian Text Copyright © 2005 by Khomenkov, Shevelev, Zhukov, Kurlovich, Zagustina, Popov.  相似文献   

2.
A range of species of four mixed bacterial cultures was studied by molecular systematics methods with the use of 16S rRNA genes. The cultures had been developed for application in minireactors, to degrade volatile organic compounds (VOCs): ethyl benzene, m-xylene, styrene, and o-xylene. A sample of 30 plasmid rDNA clones was obtained for each of the mixed cultures. The clones were analyzed by RFLP according to two restriction sites. Major variants of the 16S-rDNA sequences, corresponding to the most abundant species, were determined for each association. Sequencing of four clones of predominant 16S-rDNAs showed that the culture consuming ethyl benzene was dominated by Pseudomonas fluorescens; o-xylene, by Achromobacter xylosoxydans; styrene, by Pseudomonas veronii; and m-xylene, by Delftia acidovorans. Minor components of all four cultures were generally similar. They included species of the genera Sphingobacter, Rhizobium, Mesorhizobium, Pedobacter, and Paenibacillus. Sampling sequencing of genes for 16S rRNA cloned from total genomic DNA allowed quantitative determination of the composition of actual bacterial associations consuming VOCs in minireactors.  相似文献   

3.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

4.
Pseudomonas sp. strain JS150 was isolated as a nonencapsulated variant of Pseudomonas sp. strain JS1 that contains the genes for the degradative pathways of a wide range of substituted aromatic compounds. Pseudomonas sp. strain JS150 grew on phenol, ethylbenzene, toluene, benzene, naphthalene, benzoate, p-hydroxybenzoate, salicylate, chlorobenzene, and several 1,4-dihalogenated benzenes. We designed experiments to determine the conditions required for induction of the individual pathways and to determine whether multiple substrates could be biodegraded simultaneously. Oxygen consumption studies with whole cells and enzyme assays with cell extracts showed that the enzymes of the meta, ortho, and modified ortho cleavage pathways can be induced in strain JS150. Strain JS150 contains a nonspecific toluene dioxygenase with a substrate range similar to that found in strains of Pseudomonas putida. The presence of the dioxygenase along with multiple pathways for metabolism of substituted catechols allows facile extension of the growth range by spontaneous mutation and degradation of mixtures of substituted benzenes and phenols. Chlorobenzene-grown cells of strain JS150 degraded mixtures of chlorobenzene, benzene, toluene, naphthalene, trichloroethylene, and 1,2- and 1,4-dichlorobenzenes in continuous culture. Under similar conditions, phenol-grown cells degraded a mixture of phenol, 2-chloro-, 3-chloro, and 2,5-dichlorophenol and 2-methyl- and 3-methylphenol. These results indicate that induction of appropriate biodegradative pathways in strain JS150 permits the biodegradation of complex mixtures of aromatic compounds.  相似文献   

5.
Three naphthalene-degrading strains were isolated from compost, characterized by morphological and physiological properties and differentiated by 16S rDNA RFLP. During growth on naphthalene, Pseudomonas aeruginosa 2NR produced ortho catechol pathway intermediates and gentisic acid. The ability to accumulate and degrade gentisic acid shows that Ps. aeruginosa 2NR has a different salicylate pathway to that of the intensely studied Ps. putida NCIB 9816. Molecular analysis showed the presence both of genes of the upper naphthalene pathway and genes of the ortho and meta catechol pathways. The insertion of nagH and nagG, coding for salicylate 5-hydroxylase in Pseudomonas sp. U2, was absent in Ps. aeruginosa 2NR, as in Ps. putida NCIMB 9816.  相似文献   

6.
The arrangement of the genes involved in o-xylene, m-xylene, and p-xylene catabolism was investigated in three Pseudomonas stutzeri strains: the wild-type strain OX1, which is able to grow on o-xylene but not on the meta and para isomers; the mutant M1, which grows on m-xylene and p-xylene but is unable to utilize the ortho isomer; and the revertant R1, which can utilize all the three isomers of xylene. A 3-kb insertion sequence (IS) termed ISPs1, which inactivates the m-xylene and p-xylene catabolic pathway in P. stutzeri OX1 and the o-xylene catabolic genes in P. stutzeri M1, was detected. No IS was detected in the corresponding catabolic regions of the P. stutzeri R1 genome. ISPs1 is present in several copies in the genomes of the three strains. It is flanked by 24-bp imperfect inverted repeats, causes the direct duplication of 8 bp in the target DNA, and seems to be related to the ISL3 family.  相似文献   

7.
Seven different sources of inocula that included sediments, contaminated soils, groundwater, process effluent, and sludge were used to establish enrichment cultures of denitrifying bacteria on benzene, toluene, and xylenes in the absence of molecular oxygen. All of the enrichment cultures demonstrated complete depletion of toluene and partial depletion of o-xylene within 3 months of incubation. The depletion of o-xylene was correlated to and dependent on the metabolism of toluene. No losses of benzene, p-xylene, or m-xylene were observed in these initial enrichment cultures. However, m-xylene was degraded by a subculture that was incubated on m-xylene alone. Complete carbon, nitrogen, and electron balances were determined for the degradation of toluene and m-xylene. These balances showed that these compounds were mineralized with greater than 50% conversion to CO2 and significant assimilation into biomass. Additionally, the oxidation of these compounds was shown to be dependent on nitrate reduction and denitrification. These microbial degradative capabilities appear to be widespread, since the widely varied inoculum sources all yielded similar results.  相似文献   

8.
9.
Seven different sources of inocula that included sediments, contaminated soils, groundwater, process effluent, and sludge were used to establish enrichment cultures of denitrifying bacteria on benzene, toluene, and xylenes in the absence of molecular oxygen. All of the enrichment cultures demonstrated complete depletion of toluene and partial depletion of o-xylene within 3 months of incubation. The depletion of o-xylene was correlated to and dependent on the metabolism of toluene. No losses of benzene, p-xylene, or m-xylene were observed in these initial enrichment cultures. However, m-xylene was degraded by a subculture that was incubated on m-xylene alone. Complete carbon, nitrogen, and electron balances were determined for the degradation of toluene and m-xylene. These balances showed that these compounds were mineralized with greater than 50% conversion to CO2 and significant assimilation into biomass. Additionally, the oxidation of these compounds was shown to be dependent on nitrate reduction and denitrification. These microbial degradative capabilities appear to be widespread, since the widely varied inoculum sources all yielded similar results.  相似文献   

10.
A strain of Pseudomonas putida (TMB) was found to resemble P. putida mt-2 (PaW1) in its ability to degrade 1,2,4-trimethylbenzene, toluene, m-xylene, and p-xylene via oxidation of a methyl substituent and reaction of the meta fission pathway, but a different regulatory model is suggested. The ability of P. putida TMB to degrade these substrates was encoded by plasmid pGB (85 kilobase pairs), which showed considerable differences in size, restriction patterns, and DNA sequence from those of plasmid pWWO of strain PaW1.  相似文献   

11.
Pseudomonas putida mt-2 carries a plasmid (TOL, pWWO) which codes for a single set of enzymes responsible for the catabolism of toluene and m- and p-xylene to central metabolites by way of benzoate and m- and p-toluate, respectively, and subsequently by a meta cleavage pathway. Characterization of strains with mutations in structural genes of this pathway demonstrates that the inducers of the enzymes responsible for further degradation of m-toluate include m-xylene, m-methylbenzyl alcohol, and m-toluate, whereas the inducers of the enzymes responsible for oxidation of m-xylene to m-toluate include m-xylene and m-methylbenzyl alcohol but not m-toluate. A regulatory mutant is described in which m-xylene and m-methylbenzyl alcohol no longer induce any of the pathway enzymes, but m-toluate is still able to induce the enzymes responsible for its own degradation. Among revertants of this mutant are some strains in which all the enzymes are expressed constitutively and are not further induced by m-xylene. A model is proposed for the regulation of the pathway in which the enzymes are in two regulatory blocks, which are under the control of two regulator gene products. The model is essentially the same as proposed earlier for the regulation of the isofunctional pathway on the TOL20 plasmid from P. putida MT20.  相似文献   

12.
Toluene and o-xylene were completely mineralized to stoichiometric amounts of carbon dioxide, methane, and biomass by aquifer-derived microorganisms under strictly anaerobic conditions. The source of the inoculum was creosote-contaminated sediment from Pensacola, Fla. The adaptation periods before the onset of degradation were long (100 to 120 days for toluene degradation and 200 to 255 days for o-xylene). Successive transfers of the toluene- and o-xylene-degrading cultures remained active. Cell density in the cultures progressively increased over 2 to 3 years to stabilize at approximately 10(9) cells per ml. Degradation of toluene and o-xylene in stable mixed methanogenic cultures followed Monod kinetics, with inhibition noted at substrate concentrations above about 700 microM for o-xylene and 1,800 microM for toluene. The cultures degraded toluene or o-xylene but did not degrade m-xylene, p-xylene, benzene, ethylbenzene, or naphthalene. The degradative activity was retained after pasteurization or after starvation for 1 year. Degradation of toluene and o-xylene was inhibited by the alternate electron acceptors oxygen, nitrate, and sulfate. Degradation was also inhibited by the addition of preferred substrates such as acetate, H2, propionate, methanol, acetone, glucose, amino acids, fatty acids, peptone, and yeast extract. These data suggest that the presence of natural organic substrates or contaminants may inhibit anaerobic degradation of pollutants such as toluene and o-xylene at contaminated sites.  相似文献   

13.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

14.
Pseudocumene (1,2,4-trimethylbenzene) and 3-ethyltoluene were found to serve as growth substrates for Pseudomonas putida (arvilla) mt-2, in addition to toluene, m-xylene, and p-xylene as previously described. Similar observations were made with several additional P. putida strains also capable of growth with toluene and the xylenes. Additional substrates which supported the growth of these organisms included 3,4-dimethylbenzyl alcohol, 3,4-dimethylbenzoate, and 3-ethylbenzoate. P. putida mt-2 cells grown either with toluene or pseudocumene rapidly oxidized toluene, pseudocumene, and 3-ethyltoluene as well as 3,4-dimethylbenzoate, 3-ethylbenzoate, 3,4-dimethylcatechol, and 3-ethylcatechol. Cell extracts from similarly grown P. putida mt-2 cells catalyzed a meta fission of 3,4-dimethylcatechol and 3-ethylcatechol to compounds having the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate and 2-hydroxy-6-ox-2,4-octadienoate, respectively. The further metabolism of these intermediates was shown to be independent of oxidized nicotinamide adenine dinucleotide (NAD+) and resulted in the formation of essentially equimolar amounts of pyruvate, indicating that each ring fission product was degraded via the hydrolytic branch of the meta fission pathway. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of a mutant, which when grown with succinate in the presence of pseudocumene or 3-ethyltoluene accumulated 3,4-dimethylcatechol or 3-ethylcatechol. Cells unable to utilize toluene, m-xylene, and p-xylene, obtained by growth in benzoate, also lost the ability to utilize pseudocumene and 3-ethyltoluene. The ability to utilize these substrates could be reacquired by incubation with a leucine auxotroph otherwise able to grow on all of the aromatic substrates.  相似文献   

15.
J Y Lee  K H Jung  S H Choi    H S Kim 《Applied microbiology》1995,61(6):2211-2217
Construction of a hybrid strain which is capable of mineralizing components of a benzene, toluene, and p-xylene mixture simultaneously was attempted by redesigning the metabolic pathway of Pseudomonas putida. Genetic and biochemical analyses of the tod and the tol pathways revealed that dihydrodiols formed from benzene, toluene, and p-xylene by toluene dioxygenase in the tod pathway could be channeled into the tol pathway by the action of cis-p-toluate-dihydrodiol dehydrogenase, leading to complete mineralization of a benzene, toluene, and p-xylene mixture. Consequently, a hybrid strain was constructed by cloning todC1C2BA genes encoding toluene dioxygenase on RSF1010 and introducing the resulting plasmid into P. putida mt-2. The hybrid strain of P. putida TB105 was found to mineralize a benzene, toluene, and p-xylene mixture without accumulation of any metabolic intermediate.  相似文献   

16.
Pseudomonas stutzeri OX1 meta pathway genes for toluene and o-xylene catabolism were analyzed, and loci encoding phenol hydroxylase, catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde dehydrogenase, and 2-hydroxymuconate semialdehyde hydrolase were mapped. Phenol hydroxylase converted a broad range of substrates, as it was also able to transform the nongrowth substrates 2,4-dimethylphenol and 2,5-dimethylphenol into 3,5-dimethylcatechol and 3,6-dimethylcatechol, respectively, which, however, were not cleaved by catechol 2,3-dioxygenase. The identified gene cluster displayed a gene order similar to that of the Pseudomonas sp. strain CF600 dmp operon for phenol catabolism and was found to be coregulated by the tou operon activator TouR. A hypothesis about the evolution of the toluene and o-xylene catabolic pathway in P. stutzeri OX1 is discussed.  相似文献   

17.
The metabolism of benzene and toluene was investigated in preparations of human bone marrow incubated with S-adenosyl-L-methionine. Benzene undergoes a methyl-substitution reaction to yield toluene as a metabolite. Furthermore, toluene undergoes methyl-substitution in preparations of human bone marrow incubated with S-adenosyl-L-methionine to yield o-xylene, m-xylene, and p-xylene. Metabolites were detected by gas chromatography and mass spectroscopy. No metabolism of either benzene or toluene was detected when a boiled bone marrow preparation was used in the incubation, demonstrating the enzymatic nature of the S-adenosyl-L-methionine dependent methylation of both benzene and toluene.  相似文献   

18.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

19.
The regulated meta pathway operon for the catabolism of salicylate on the naphthalene plasmid pWW60-22 was cloned into the broad-host-range vector pKT230 on a 17.5 kbp BamHI fragment. The recombinant plasmid conferred the ability to grow on salicylate when mobilized into plasmid-free Pseudomonas putida PaW130. A detailed restriction map of the insert was derived and the locations of some of the genes were determined by subcloning and assaying for their gene products in Escherichia coli and P. putida hosts. The existence of a regulatory gene was demonstrated by the induction of enzyme activities in the presence of salicylate. DNA-DNA hybridization indicated a high degree of structural homology between the pWW60-22 operon and the analogous meta pathway operon on TOL plasmid pWW53-4. The data are consistent with the structural genes being arranged in an identical linear array and suggest an evolutionary link between the two catabolic systems.  相似文献   

20.
p-Cymene monooxygenase (CMO) from Pseudomonas putida F1 consists of a hydroxylase (CymA1) and a reductase component (CymA2) which initiate pcymene (p-isopropyltoluene) catabolism by oxidation of the methyl group to p-isopropylbenzyl alcohol (p-cumic alcohol). To study the possible diverse range of substrates catalyzed by CMO, the cymA1A2 genes were cloned in an Escherichia coli pT7-5 expression system and the cells were used in transformation experiments. The tested substrates include different substituents on the aromatic ring at the 2 (ortho), 3 (meta) or 4 (para) position relative to the methyl moiety. As a result, a distinct preference was observed for substrates containing at least an alkyl or heteroatom substituent at the para-position of toluene. The conversion rate of 4-chlorotoluene or 4-methylthiotoluene to the corresponding benzyl alcohol was found to be as good as the canonical substrate, p-cymene. But 3-chlorotoluene, 4-fluorotoluene and 4-nitrotoluene were relatively poor substrates. CMO is also capable of producing styrene oxide from styrene. However, the oxidation of 4-chlorostyrene to 4-chlorostyrene oxide was by far the fastest among the substrates used in this study. The various biotransformation products were identified by a combined solid phase microextraction/gas chromatographic-mass spectrometric analytical technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号