首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of massive CD4+ T cell depletion is one of the most prominent characteristics of human immunodeficiency virus type 1 (HIV-1) infection during acute phase, resulting in unrestorable destruction to the immune system. The infected host undergoes an asymptomatic period lasting several years with low viral load and ostensibly healthy status, which is presumably due to virus-specific adaptive immune responses. In the absence of therapy, an overwhelming majority of cases develop to AIDS within 8–10 years of latent infection. In this review, we discuss the roles in AIDS pathogenesis played by massive CD4+ T lymphocytes depletion in gut-associated lymphoid tissue (GALT) during acute infection and abnormal immune activation emerging in the later part of chronic phase.  相似文献   

2.
Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.  相似文献   

3.
《Cytokine》2015,71(2):87-96
Autophagy and apoptosis are important in maintaining the metabolic homeostasis of intervertebral disc cells, and transforming growth factor-β1 (TGF-β1) is able to delay intervertebral disc degeneration. This study determined the effect of TGF-β1 on the crosstalk between autophagy and apoptosis in the disc cells, with the aim to provide molecular mechanism support for the prevention and treatment of disc degeneration. Annulus fibrosus (AF) cells were isolated and cultured under serum starvation. 10 ng/mL TGF-β1 reduced the apoptosis incidence in the cells under serum starvation for 48 h, down-regulated the autophagy incidence in the cells pretreated with 3-methyladenine (3-MA) or Bafilomycin A (Baf A), partly rescued the increased apoptosis incidence in the cells pretreated with 3-MA, while further reduced the decreased apoptosis incidence in the cells pretreated with Baf A. Meanwhile, TGF-β1 down-regulated the expressions of autophagic and apoptotic markers in the cells under starvation, partly down-regulated the expressions of Beclin-1, LC3 II/I and cleaved caspase-3 in the cells pretreated with 3-MA or Baf A, while significantly decreased the expression of Bax/Bcl-2 in the cells pretreated with Baf A. 3-MA blocked the phosphorylation of both AKT and mTOR and partly reduced the inhibitory effect of TGF-β1 on the expression of LC3 II/I and cleaved caspase-3. TGF-β1 enhanced the expression of p-ERK1/2 and down-regulated the expressions of LC3 II/I and cleaved caspase-3. U0126 partly reversed this inhibitory effect of TGF-β1. In conclusion, TGF-β1 protected against apoptosis of AF cells under starvation through down-regulating excessive autophagy. PI3K–AKT–mTOR and MAPK–ERK1/2 were the possible signaling pathways involved in this process.  相似文献   

4.
Death-associated protein kinase 2 (DAPK2/DRP-1) belongs to a family of five related serine/threonine kinases that mediate a range of cellular processes, including membrane blebbing, apoptosis, and autophagy, and possess tumour suppressive functions. The three most conserved family members DAPK1/DAPK, DAPK2 and DAPK3/ZIPK share a high degree of homology in their catalytic domain, but differ significantly in their extra-catalytic structures and tissue-expression profiles. Hence, each orthologue binds to various unique interaction partners, localizes to different subcellular regions and controls some dissimilar cellular functions. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms that activate DAPK2 and that execute DAPK2-mediated apoptosis, autophagy and inflammation. In this “molecules in focus” review on DAPK2, the structure, modes of regulation and various cellular functions of DAPK2 will be summarized and discussed.  相似文献   

5.
Redox signaling plays important roles in the regulation of cell death and survival in response to cancer therapy. Autophagy and apoptosis are discrete cellular processes mediated by distinct groups of regulatory and executioner molecules, and both are thought to be cellular responses to various stress conditions including oxidative stress, therefore controlling cell fate. Basic levels of reactive oxygen species (ROS) may function as signals to promote cell proliferation and survival, whereas increase of ROS can induce autophagy and apoptosis by damaging cellular components. Growing evidence in recent years argues for ROS that below detrimental levels acting as intracellular signal transducers that regulate autophagy and apoptosis. ROS-regulated autophagy and apoptosis can cross-talk with each other. However, how redox signaling determines different cell fates by regulating autophagy and apoptosis remains unclear. In this review, we will focus on understanding the delicate molecular mechanism by which autophagy and apoptosis are finely orchestrated by redox signaling and discuss how this understanding can be used to develop strategies for the treatment of cancer.  相似文献   

6.
Our previous studies showed that oridonin could induce both apoptosis and autophagy in HeLa cells, and this autophagy might be a protective mechanism against apoptosis. In this study, the roles of PKC signal pathways in oridonin-induced HeLa cell autophagy and apoptosis were further investigated. We found that inhibition of PKC significantly reduced oridonin-induced autophagy whereas markedly increased apoptosis, while pretreatment with PKC activator caused opposite results. Subsequently, the oridonin-induced autophagy was also suppressed by Raf-1 or JNK inhibition accompanied by the increase of apoptosis, but it was not affected by ERK or p38 inhibition. In addition, oridonin-induced protein levels of Raf-1, JNK and p-JNK were sharply downregulated by PKC inhibitor, and they were enhanced by PKC activator. Taken together, these results demonstrate that PKC enhances oridonin-induced autophagy against apoptosis through regulating its downstream factors Raf-1 and JNK in HeLa cells.  相似文献   

7.
We studied the alterations of dying oocytes in 1–28 days old rats using TUNEL method, immunolocalizations of active caspase 3, lamp1, localization of acid phosphatase, and DAPI staining. All procedures were performed in adjacent sections of each oocyte. In most dying oocytes exist simultaneously features of apoptosis as active caspase 3 and DNA breaks, and a large increase of lamp1 and acid phosphatase characteristic of autophagy. Large clumps of compact chromatin and membrane blebbing were absent. Electron microscope observations demonstrated the presence of small clear vesicles and autophagolysosomes. All these features indicate that a large number of oocytes are eliminated by a process sharing features of apoptosis and autophagy. In dying oocytes of new born rats the markers of apoptosis predominate over those of autophagy. However, fragmentation and apoptotic bodies were not found. These features suggest that in different cytophysiological conditions the processes of cell death may be differently modulated.  相似文献   

8.
Autophagy modulation has been considered as a potential therapeutic strategy for lung diseases. The PI3K-Akt-mTOR pathway may be one of the main targets for regulation of autophagy. We previously reported that a PI3 K/mTOR dual inhibitor PF-04691502 suppressed hepatoma cells growth in vitro. However, it is still unclear whether PF-04691502 induces autophagy and its roles in DNA damage and cell death in human lung cancer cells. In this study, we investigate the effects of PF-04691502 on the autophagy and its correlation with cell apoptosis and DNA damage in non-small-cell lung cancer (NSCLC) cell lines. PF-04691502 efficiently inhibited the phosphorylation of Akt and showed dose-dependent cytotoxicity in A549 and H1299 cells. PF-04691502 also triggered apoptosis and the cleavage of caspase-3 and PARP. Phosphorylated histone H2AX (γ-H2AX), a hallmark of DNA damage response, was dramatically induced by PF-04691502 treatment. By exposure to PF-04691502, A549 cells acquired a senescent-like phenotype with an increase in the level of β-galactosidase. Furthermore, PF-04691502 enhanced the expression of LC3-II in a concentration-dependent manner. More interestingly, effects of PF-04691502 on toxicity and DNA damage were remarkably increased by co-treatment with an autophagy inhibitor, chloroquine (CQ), in human lung cancer cells. These data suggest that a strategy of blocking autophagy to enhance the activity of PI3 K/mTOR inhibitors warrants further attention in treatment of NSCLC cells.  相似文献   

9.
Autophagy,the pathway whereby cell components are degraded by lysosomes,is involved in the cell response to environmental stresses,such as nutrient deprivation,hypoxia or exposition to chemotherapeutic agents.Under these conditions,which are reminiscent of certain phases of tumor development,autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy,as has been proposed.Here,we describe the regulation of survival and death by autophagy and apoptosis,especially in cultured breast cancer cells.In particular,we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease.  相似文献   

10.
11.
The mechanisms of intercommunication between the immune and nervous systems are not fully understood. In the case of the intestine, the enteric nervous system is involved in the regulation of immune responses. It was therefore decided to employ immunohistochemical techniques to investigate the structural organization of the enteric nervous system in Peyer's patches of the porcine small intestine. Using antibodies against various nervous system-specific markers (protein gene product 9.5, neuron-specific enolase, neurofilament 200, S-100 protein and the glial fibrillary acidic protein), an intimate and specific structural association could be demonstrated between enteric nerves and the compartments of Peyer's patches: follicles, interfollicular regions and domes. Peyer's patches have a close topographical relationship to the two submucosal plexuses. Enteric nerves are located around the follicle in the interfollicular area — the so-called traffic area-and in the dome area, which plays an important role in the uptake and presentation of antigens.  相似文献   

12.
Sonodynamic therapy (SDT) is a relatively new approach in the treatment of various cancers including leukemia cells. The aim of this study is to investigate the occurrence of apoptosis and autophagy after treated by protoporphyrin IX (PpIX)-mediated SDT (PpIX-SDT) on human leukemia K562 cells as well as the relationship between them. Firstly, mitochondrial-dependent apoptosis was observed through morphological observation and biochemical analysis. Meanwhile, SDT was shown to induce autophagy in K562 cells, which caused an increase in EGFP-LC3 puncta cells, a conversion of LC3 II/I, formation of acidic vesicular organelles (AVOs) and co-localization between LC3 and LAMP2 (a lysosome marker). Besides, pretreatment with autophagy inhibitor 3-MA or bafilomycin A1 was shown to provide protection against autophagy and to enhance SDT-induced apoptosis and necrosis, while the apoptosis suppressor z-VAD-fmk failed to affect formation of autophagic vacuoles or partially prevented SDT-induced cytotoxicity, which suggested that SDT-induced autophagy functioned as a survival mechanism. Additionally, this study reported apparent apoptosis and autophagy with dependence on intracellular reactive oxygen species (ROS) production. Preliminary data showed that ROS scavenger N-acetylcysteine (NAC) effectively blocked the SDT induced accumulation of ROS, reversed sono-damage, cell apoptosis and autophagy. Taken together, these data indicate that autophagy may be cytoprotective in our experimental system, and the ROS caused by PpIX-SDT treatment may play an important role in initiating apoptosis and autophagy.  相似文献   

13.
Extracellular adenosine triphosphate (eATP) transduces purinergic signal and plays an important regulatory role in many biological processes, including tumor cell growth and cell death. A large amount of eATP exists in the fast-growing tumor center and inflammatory tumor microenvironment. Tumor cells could acquire anoikis resistance and anchorage independence in tumor microenvironment and further cause metastatic lesion. Whether such a high amount of eATP has any effect on the anchored and non-anchored tumor cells in tumor microenvironment has not been elucidated and is investigated in this study. Our data showed that autophagy helped hepatoma cells to maintain survival under the treatment of no more than 1 mM of eATP. Only when eATP concentration reached a relatively high level (2.5 mM), cell organelle could not be further maintained by autophagy, and apoptosis and cell death occurred. In hepatoma cells under treatment of 2.5 mM of eATP, an AMP-activated protein kinase (AMPK) pathway was dramatically activated while mTOR signaling pathway was suppressed in coordination with apoptosis. Further investigation showed that the AMPK/mTOR axis played a key role in tipping the balance between autophagy-mediated cell survival and apoptosis-induced cell death under the treatment of eATP. This work provides evidence to explain how hepatoma cells escape from eATP-induced cytotoxicity as well as offers an important clue to consider effective manipulation of cancer.  相似文献   

14.
KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.  相似文献   

15.
New insights into the immunology and evolution of HIV   总被引:6,自引:1,他引:5  
Fewer than one million HIV infected individuals are currently receiving anti-retroviral therapy.The limitations of such treatment have underscored the need to develop more effective strategies to control the spread and pathogenesis of HIV.Typically,naturally occurring protective immune responses provide the paradigm for such development.It is now clear however that HIV can utilise the millieu of and activated immune system to its own replicative advantage.Mobilisation of the immune response,intended to thwart the virus,may instead fuel its dissemination. ‘immune escape’and spread.The immense genetic variation of HIV contributes to lack of immune control and the development of progressive disease in the majority of infected,untreated individuals.Further delineation of the intimate interactions between the HIV and the immune system will be critical and recent advances in this direction are discussed.  相似文献   

16.
Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.  相似文献   

17.
A series of novel 3-aryl-1-arylmethyl-1H-pyrazole-5-carboxamide derivatives 3al, were synthesized by the reaction of 3-aryl-1-arylmethyl-1H-pyrazole-5-carbonyl chloride with substituted amine in excellent yields. The compounds 3eh could suppress A549 lung cancer cell growth. More interestingly, compounds 3e and 3f might inhibit the A549 cell growth by inducing apoptosis; whereas compounds 3g and 3h with fluorine group might inhibit the A549 cell growth by inducing autophagy.  相似文献   

18.
Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ1 and σ2 receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC50 values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl2 family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells.  相似文献   

19.
Although HIV uses CD4 and coreceptors (CCR5 and CXCR4) for productive infection of T cells, glycosphingolipids (GSL) may play ancillary roles in lymphoid and non-lymphoid cells. Interactions of the HIV Envelope Glycoprotein (Env) with GSL may help HIV in various steps of its pathogenesis. Physical-chemical aspects of the interactions between HIV Env and GSL leading to CD4-dependent entry into lymphocytes, the role of GSL in HIV transcytosis, and CD4-independent entry into non-lymphoid cells are reviewed. An overview of signaling properties of HIV receptors is provided with some speculation on how GSL may play a role in these events by virtue of being in membrane rafts. Finally, we summarize how interactions between HIV and coreceptors leading to signaling and/or fusion can be analyzed by the use of various tyrosine kinase and cytoskeletal inhibitors. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Summary The zonulae occludentes of the dome epithelia and adjacent non-dome epithelia in four locations of the gut-associated lymphoid tissue (GALT) in the rabbit ileum and caecum (Peyer's patches, sacculus rotundus, caecal lymphoid patches, appendix) were studied in freeze-fracture replicas. In all locations the zonulae occludentes of the dome epithelium are composed of more junctional strands than in the corresponding non-dome epithelium. In the dome epithelia of Peyer's and caecal lymphoid patches the zonulae occludentes show considerable structural variation; the number of superimposed strands is 10 (range 5–18). In the dome epithelia of sacculus rotundus and appendix, in addition to zonulae occludentes, extended networks of junctional strands (fasciae occludentes) are present particularly between M-cells and enterocytes. The zonulae occludentes consist of 8 to 9 (range 5–15) superimposed strands; the fasciae occludentes extend up to a depth of 20m on the lateral membranes. The presence of the fasciae occludentes correlates with the appearance of regularly shaped clusters of lymphocytes, which are most developed in the dome epithelia of sacculus rotundus and appendix. These results suggest (1) that in contrast to the dome epithelia of Peyer's and caecal lymphoid patches those of sacculus rotundus and appendix are compartmentalized, and (2) that the mobility of lymphocytes and diffusion of antigens in the dome epithelia of sacculus rotundus and appendix is restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号