首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】探讨江苏某羊场健康绵羊体内产志贺毒素大肠杆菌的带菌和流行情况,同时就分离株的致病力和对Vero细胞的毒性作用作了研究。【方法】基于本实验室已经建立的EHEC O157:H7 EDL933W株的stx1、stx2、eaeA、hlyA四个基因的多重PCR检测并配合选择性增菌、平板筛选等方法对STEC进行分离鉴定。【结果】在为期6个月的连续跟踪调查中,共分离到STEC菌株107株,分离率为19.4%(107/550)。分离株属于41种O血清型、62种O:H血清型,未定型(ONT)有22株,粗糙型(OR)1株。其中属于绵羊STEC的优势血清型有O5(2株)、O91(1株)、O103(1株)。本文检测到的优势血清型为O93,stx2阳性菌株的分离率较stx1阳性菌株的分离率高,LD50测定结果表明分离株对小鼠致病力不高,受试的3个分离株均不能致小鼠死亡。对107株stx阳性分离株噬菌斑试验表明,71株阳性菌株携带噬菌体(66.3%,71/109)。受试分离株进行Vero细胞毒性试验,其中有一个菌株stx基因阳性但不能使Vero细胞产生病变。【结论】绵羊是STEC的天然宿主,可健康带菌。虽然STEC分离株对小鼠的致病力较弱,但不能排除其对人类安全的威胁。STEC携带志贺毒素基因并不意味着一定表达志贺毒素,需对志贺毒素的表达及调控机理做进一步的研究。  相似文献   

2.
Shiga toxin producing Escherichia coli (STEC) are dangerous foodborne pathogens. Foods are considered as important sources for STEC infection in human. In this study, STEC contamination of raw meats was investigated and the virulence factors of 120 clinical STEC strains characterized. STEC was detected in 4.4% of tested samples. Among 25 STEC strains from meats, five strains (20%) were positive for the eae gene, which encodes intimin, an important binding protein of pathogenic STEC. The remaining strains (80%) were eae‐negative. However, 28% of them possessed the saa gene, which encodes STEC agglutinating adhesin. The ehxA gene encoding for enterohemolysin was found in 75% of the meat strains and the subAB gene, the product is of which subtilase cytotoxin, was found in 32% of these strains. The stx2a gene, a subtype of Shiga toxin gene (stx), was the most prevalent subtype among the identified meat STEC bacteria. None of the meat STEC was O157:H7 serotype. Nevertheless, 92% of them produced Shiga toxin (Stx). Among 120 clinical STEC strains, 30% and 70% strains harbored single and multiple stx subtypes, respectively. Most clinical STEC bacteria possessed eae (90.8%) and ehxA (96.7%) genes and 92.5% of them showed Stx productivity. Our study shows that some raw meat samples contain non‐O157 STEC bacteria and some strains have virulence factors similar to those of clinical strains.  相似文献   

3.
During routine quality control testing of diagnostic methods for Shiga toxin-producing Escherichia coli (STEC) using stool samples spiked with STEC, it was observed that the Shiga toxin could not be detected in 32 out of 82 samples tested. Strains of E. coli isolated from such stool samples were shown to be responsible for this inhibition. One particular isolate, named E. coli 1307, was intensively studied because of its highly effective inhibitory effect; this strain significantly reduced growth and Shiga toxin levels in coculture of several STEC strains regardless of serovar or Shiga toxin type. The probiotic E. coli Nissle 1917 inhibited growth and reduced Shiga toxin levels in STEC cultures to an extent similar to E. coli 1307, but commensal E. coli strains and several other known probiotic bacteria (enterococci, Bacillus sp., Lactobacillus acidophilus ) showed no, or only small, inhibitory effects. Escherichia coli 1307 lacks obvious fitness factors, such as aerobactin, yersiniabactin, microcins and a polysaccharide capsule, that are considered to promote the growth of pathogenic bacteria. We therefore propose strain E. coli 1307 as a candidate probiotic for use in the prevention and treatment of infections caused by STEC.  相似文献   

4.
Sheep and lambs from 14 farms in southern Queensland and one from central New South Wales were surveyed to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC). STEC, isolated from 45% of 144 sheep faeces collected on the farms and 36% of 72 lamb faeces from abattoir yards, were tested for the presence of genes encoding virulence factors. Most (64%) of the 117 STEC isolates contained Shiga toxin 1 and 2 genes, 22% contained those encoding Shiga toxin 1, and 14% contained genes encoding Shiga toxin 2. The genes encoding the E. coli attaching and effacing factor were present in 2.6% of STEC and 26% contained the enterohaemolysin gene. The isolates that contained the E. coli attaching and effacing gene were serotype O157:H. This study has shown that STEC are widely distributed in eastern Australian sheep and lambs and are shed in their faeces prior to slaughter. Thus, there is potential for contamination of carcasses and entry of STEC into the human food chain.  相似文献   

5.
This study reports two novel selective differential media. A first differential medium can be applied in methods for the isolation of non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes (O26, O103, O111 and O145) from food or faeces. A second differential medium was designed for both sorbitol-positive and -negative O157 STEC strains. Selective differential media are based on a chromogenic compound to signal beta-galactosidase activity and one or more fermentative carbon sources. The chromogenic marker and carbohydrates were combined with a pH indicator and several inhibitory components, which resulted in highly specific differentiation media. Consecutive use of a serotype-dependent choice of confirmation media resulted in a very low incidence of false-positive isolates when comparing clinical STEC strains with a collection of commensal E. coli strains.  相似文献   

6.
We investigated the role of bacterial internalization in the killing caused by Shiga toxin-producing Escherichia coli (STEC) infection using a gnotobiotic murine model. A high number of internalized STEC was found in the colonic epithelial cells of STEC-infected mice by both an ex vivo assay and transmission electron microscopy. Most of these mice were killed within 10 days after infection. However, the implantation of lactic acid bacteria in such mice before infection markedly decreased the number of internalized STECs and also completely protected these hosts from killing by a STEC infection. The inhibition of such internalization by immunoglobulin also prevented the hosts from being killed. The Shiga toxin levels in these hosts indicated an inhibition of the penetration of Shiga toxins produced in the colon to the underlying tissue. These results suggested that the internalization plays an important role in the pathogenicity caused by STEC infection in a gnotobiotic murine model.  相似文献   

7.
Shiga toxins Stx1 and Stx2 play a prominent role in the pathogenesis of Shiga toxin-producing Escherichia coli (STEC) infections. Several variants of the stx(2) gene, encoding Stx2, have been described. In this study, we developed a PCR-restriction fragment length polymorphism system for typing stx(2) genes of STEC strains. The typing system discriminates eight described variants and allows the identification of new stx(2) variants and STEC isolates carrying multiple stx(2) genes. A phylogenetic tree, based on the nucleotide sequences of the toxin-encoding genes, demonstrates that stx(2) sequences with the same PvuII HaeIII HincII AccI type generally cluster together.  相似文献   

8.
We have investigated the Shiga toxin genes of Shiga toxin-producing Escherichia coli (STEC) strains, using polymerase chain reaction (PCR) amplifying the full lengths of these genes. As a result, we found the Shiga toxin 2 gene which was insertionally inactivated by an insertion sequence (IS). This IS element was identical to IS1203v which has been also found in inactivated Shiga toxin 2 genes, and was inserted at the same site as in the previous paper. On the other hand, both Shiga toxin 2 genes were different (98.3% identity). These suggested that IS1203v independently inserted into each Shiga toxin 2 genes, and STEC strains possessing the insertionally inactivated Shiga toxin genes are most likely to have a wide distribution. Amplification of the full length of the Shiga toxin gene is one of the effective methods to detect the gene no matter where the IS element is included, i.e., the insertion can be reflected in the size of amplicon.  相似文献   

9.
10.
A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli   总被引:2,自引:0,他引:2  
A sensitive and specific PCR-ELISA was developed to detect Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in food. The assay was based on the incorporation of digoxigenin-labeled dUTP and a biotin-labeled primer specific for Shiga toxin genes during PCR amplification. The labeled PCR products were bound to streptavidin-coated wells of a microtiter plate and detected by an ELISA. The specificity of the PCR was determined using 39 bacterial strains, including STEC, enteropathogenic E. coli, E. coli K12, and Salmonella. All of the STEC strains were positive, and non-STEC organisms were negative. The ELISA detecting system was able to increase the sensitivity of the PCR assay by up to 100-fold, compared with a conventional gel electrophoresis. The detection limit of the PCR-ELISA was 0.1-10 CFU dependent upon STEC serotypes, and genotypes of Shiga toxins. With the aid of a simple DNA extraction system, PrepMan, the PCR-ELISA was able to detect ca. 10(5) CFU of STEC per gram of ground beef without any culture enrichment. The entire procedure took about 6 h. Because of its microtiter plate format, PCR-ELISA is particularly suitable for large-scale screening and compatible with future automation.  相似文献   

11.
Shiga toxin-producing Escherichia coli (STEC) strains isolated in Mangalore, India, were characterised by bead-enzyme-linked immunosorbent assay (bead-ELISA), Vero cell cytotoxicity assay, PCR and colony hybridisation for the detection of stx1 and stx2 genes. Four strains from seafood, six from beef and one from a clinical case of bloody diarrhoea were positive for Shiga toxins Stx1 and Stx2 and also for stx1and stx2 genes. The seafood isolates produced either Stx2 alone or both Stx1 and Stx2, while the beef isolates produced Stx1 alone. The stx1 gene of all the beef STEC was found to be of recently reported stx1c type. All STEC strains and one non-STEC strain isolated from clam harboured EHEC-hlyA. Interestingly, though all STEC strains were negative for eae gene, two STEC strains isolated from seafood and one from a patient with bloody diarrhoea possessed STEC autoagglutinating adhesion (saa) gene, recently identified as a gene encoding a novel autoagglutinating adhesion.  相似文献   

12.
Retail raw meat was sampled for the presence of Shiga toxin-producing Escherichia coli (STEC) using enrichment culture and Vero cell assay. The STEC obtained were serotyped and tested for enterohaemolysin (Ehly) production and the eae gene. The presence of Shiga toxin genes (stx) was confirmed by polymerase chain reaction. A total of 18 STEC were isolated accounting for 12% of beef, 17% of lamb and 4% of pork samples. Five isolates produced Ehly but none possessed the eae gene. Five isolates were identified which possessed the stx2 gene and belonged to serotypes associated with severe infection.  相似文献   

13.
Escherichia coli O157:H7 is a Shiga toxin (stx)-producing E. coli (STEC) strain that has been classified as an adulterant in U.S. beef. However, numerous other non-O157 STEC strains are associated with diseases of various severities and have become an increasing concern to the beef industry, regulatory officials, and the public. This study reports on the prevalence and characterization of non-O157 STEC in commercial ground beef samples (n = 4,133) obtained from numerous manufacturers across the United States over a period of 24 months. All samples were screened by DNA amplification for the presence of Shiga toxin genes, which were present in 1,006 (24.3%) of the samples. Then, culture isolation of an STEC isolate from all samples that contained stx(1) and/or stx(2) was attempted. Of the 1,006 positive ground beef samples screened for stx, 300 (7.3% of the total of 4,133) were confirmed to have at least one strain of STEC present by culture isolation. In total, 338 unique STEC isolates were recovered from the 300 samples that yielded an STEC isolate. All unique STEC isolates were serotyped and were characterized for the presence of known virulence factors. These included Shiga toxin subtypes, intimin subtypes, and accessory virulence factors related to adherence (saa, iha, lifA), toxicity (cnf, subA, astA), iron acquisition (chuA), and the presence of the large 60-MDa virulence plasmid (espP, etpD, toxB, katP, toxB). The isolates were also characterized by use of a pathogenicity molecular risk assessment (MRA; based on the presence of various O-island nle genes). Results of this characterization identified 10 STEC isolates (0.24% of the 4,133 total) that may be considered a significant food safety threat, defined by the presence of eae, subA, and nle genes.  相似文献   

14.
Shiga toxin-producing Escherichia coli (STEC) strains of O157:H7 serotype are a predominant cause of haemolytic uraemic syndrome (HUS) worldwide, but strains of non-O157 serotypes can also be associated with serious disease. Some of them are associated with outbreaks of HUS, others with sporadic cases of HUS, and some with diarrhoea but not with outbreaks or HUS. A large number of STEC serotypes isolated from ruminants and foods have never been associated with human disease. In this study we characterize a STEC strain belonging to serotype O171:H25 that is responsible for a case of HUS. This strain has a single Shiga toxin gene encoding Stx2 toxin, and hlyA gene, but is eae-negative.  相似文献   

15.
The presence of Shiga toxin-producing Escherichia coli (STEC) strains in feces samples of cattle was determined using the cytotoxicity assay on Vero cells and a screening PCR system to detect stx genes. The STEC isolates were serotyped, tested for antimicrobial susceptibility, and analyzed for virulence genes using multiplex PCR. The verocytotoxin-producing E. coli - reverse passive latex agglutination (VTEC-RPLA) assay was also used to detect Shiga toxin production. The frequency of cattle shedding STEC was 36%. The isolates belonged to 33 different serotypes, of which O10:H42, O98:H41, and O159:H21 had not previously been associated with STEC. The most frequent serotypes were ONT:H7 (10%), O22:H8 (7%), O22:H16 (7%), and ONT:H21 (7%). Most of the strains (96%) were susceptible to all antimicrobial agents tested. Shiga toxin was detected by the VTEC-RPLA assay in most (89%) of the STEC strains. The frequency of virulence markers was as follows: stx1, 10%; stx2, 43%; stx1 plus stx2, 47%; ehxA, 44%; eae, 1%; and saa, 38%. Several strains belong to serotypes associated with human disease, and most of them carried a stx2-type gene, suggesting that they represent a risk to human health. The screening PCR assay showed fewer false-negative results for STEC than the Vero-cell assay and is suitable for laboratory routine.  相似文献   

16.
Probiotics are known to have an inhibitory effect against the growth of various foodborne pathogens, however, the specific role of probiotics in Shiga-toxin-producing Escherichia coli (STEC) virulence gene expression has not been well defined. Shiga toxins are members of a family of highly potent bacterial toxins and are the main virulence marker for STEC. Shiga toxins inhibit protein synthesis in eukaryotic cells and play a role in hemorrhagic colitis and hemolytic uremic syndrome. STEC possesses Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2), both of which have A and B subunits. Although STEC containing both Stx1 and Stx2 has been isolated from patients with hemorrhagic colitis, Stx2 is more frequently associated with human disease complications. Thus, the effect of Lactobacillus, Pediococcus, and Bifidobacterium strains on stx2A expression levels in STEC was investigated. Lactic acid bacteria and bifidobacteria were isolated from farm animals, dairy, and human sources and included L. rhamnosus GG, L. curvatus, L. plantarum, L. jensenii, L. acidophilus, L. casei, L. reuteri, P. acidilactici, P. cerevisiae, P. pentosaceus, B. thermophilum, B. boum, B. suis and B. animalis. E. coli O157:H7 (EDL 933) was coincubated with sub-lethal concentrations of each probiotic strain. Following RNA extraction and cDNA synthesis, relative stx2A mRNA levels were determined according to a comparative critical threshold (Ct) real-time PCR. Data were normalized to the endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the level of stx2A expression between treated and untreated STEC was compared. Observed for all probiotic strains tested, stx2A was down-regulated, when compared to the control culture. Probiotic production of organic acids, as demonstrated by a decrease in pH, influenced stx2A gene expression.  相似文献   

17.
AIMS: The object of this study was to develop a multiplex PCR system for rapid and specific identification of Shiga toxin-producing Escherichia coli (STEC) in faeces. METHODS AND RESULTS: A multiplex PCR (mPCR) protocol was developed using a primer pair specific for genes that are involved in the biosynthesis of the O157 E. coli antigen, and primers that identify the sequences of Shiga toxin 1 and 2 (stx 1 and stx1) and the intimin protein (eaeA). The mPCR assay was used for amplification of STEC genes in bacteria directly (after enrichment) in faeces. The test was very sensitive and could detect between 9 and 1 bacterial cells per gram of faeces. The mPCR was used for the examination of 69 bovine faecal samples derived from healthy cattle. The results indicated that 62 x 3% of the samples were positive, generating at least one PCR amplicon of the expected size. CONCLUSIONS: The method can be applied for rapid and specific identification of STEC bacteria in faecal samples, and for differentiation of their main virulence marker genes. SIGNIFICANCE AND IMPACT OF THE STUDY: The ability to sensitively detect Shiga toxin-producing E. coli directly in faeces within a short time represents a considerable advancement over more time-consuming and less sensitive methods for identification and characterization of STEC bacteria.  相似文献   

18.
Two separate animal populations consisting of a herd of cattle (19 animals) and a flock of sheep (25 animals) were investigated for strains of Escherichia coli producing Shiga toxins (STEC) over a time period of 6 months. Thirty-three STEC were isolated from 63.2% of cattle and grouped into 11 serotypes and eight electrophoretic types (ETs) by multilocus enzyme analysis. In sheep, 88% of the animals excreted STEC (n = 67 isolates) belonging to 17 different serotypes and 12 different ETs. STEC from cattle and sheep differed with respect to serotype, and only 4 of the 16 ETs occurred in both animal populations. In cattle, ET14 (O116:H21) strains predominated, whereas other STEC serotypes occurred only sporadically. The predominating STEC types in sheep were ET4 (O125 strains), ET11 (O128:H2 and others), and ET14 (O146:H21). In contrast to their diversity, STEC originating from the same animal population were similar with respect to Shiga toxin (stxy genes. Almost all STEC isolated from cattle were positive for stx2 and stx2c; only one was positive for stx1. In sheep, almost all STEC isolated were positive for stx1 and stx2, whereas stx2c was not found. XbaI-digested DNAs of genetically closely related O146:H21 strains have different restriction profiles which were associated with size alterations in XbaI fragments hybridizing with stx1- and stx2-specific DNA probes. Our results indicate that stx-encoding bacteriophages might be the origin of the genetic heterogeneity in STEC from animals.  相似文献   

19.
AIMS: The aim of the study was to monitor the shedding and transmission of generic and Shiga toxin-producing Escherichia coli (STEC) in a consignment of cattle during lot feeding. METHODS AND RESULTS: Faecal and environmental samples were tested for total E. coli and screened with PCR specific for Shiga toxin and O157 rfb. STEC were isolated using colony hybridization and characterized by serology and genotyping. STEC prevalence initially decreased after the diet shift from pasture to grain, although there were intermittent peaks in numbers of cattle shedding STEC and E. coli O157. Water troughs and soil were intermittently contaminated. Common genotypes and serotypes were isolated from animals, water and soil in the feedlot, with additional types introduced at slaughter. CONCLUSION: STEC and E. coli O157 are endemic in cattle and intermittent peaks in shedding occur. Prevention of these peaks and/or reduction in transmission is required to reduce the risk of carcass contamination during slaughter. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings contribute to the understanding of the ecology of STEC and suggest control points for reducing STEC contamination in feedlot cattle production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号