首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Geminiviruses are ssDNA plant viruses that cause significant agricultural losses worldwide. The viruses do not encode a polymerase protein and must reprogram differentiated host cells to re-enter the S-phase of the cell cycle for the virus to gain access to the host-replication machinery for propagation. To date, 3 Beet curly top virus (BCTV) encoded proteins have been shown to restore DNA replication competency: the replication-initiator protein (Rep), the C2 protein, and the C4 protein. Ectopic expression of the BCTV C4 protein leads to a severe developmental phenotype characterized by extensive hyperplasia. We recently demonstrated that C4 interacts with 7 of the 10 members of the Arabidopsis thaliana SHAGGY-like protein kinase gene family and characterized the interactions of C4 and C4 mutants with AtSKs. Herein, we propose a model of how C4 functions.  相似文献   

2.
3.
4.
Summary Eight insects (some adult and some larval forms) are studied for the presence of sialic acids in the cells of the salivary glands. This was sought by staining with alcian blue and Azure A at different pH accompanied by acid hydrolysis, sialidase digestion and methylation-saponification.On the basis of susceptibility to acid hydrolysis and sialidase digestion, different sialic acids are discernable. Though there is apparently no correlation between the secretion of sialic acid and the feeding habits of these insects, there is an interesting correlation between these two in the case of nectar and pollen eating habit of Apis.Presented at the 56th Session of Indian Science Congress. 2–9 January, 1969, Bombay, India.  相似文献   

5.
Rice crops are severely damaged by diseases caused by bacterial, fungal, and viral pathogens. Application of host resistance to these pathogens is the most economical and environmentally friendly approach to solve this problem. Quantitative resistance conferred by quantitative trait loci (QTL) is a valuable resource for the improvement of rice disease resistance. Although numerous resistance QTL against rice diseases have been identified, these resources have not been used effectively in rice improvement because the genetic control of quantitative resistance is complex and the genes underlying most of the resistance QTL remain unknown. This review focuses on the latest molecular progress in quantitative disease resistance in rice. This knowledge will be helpful for characterizing more resistance QTL and turning the quantitative resistance into actual resources for rice protection.  相似文献   

6.
应用差异蛋白质组学方法分析作物化感作用的分子机理   总被引:8,自引:1,他引:8  
试验旨在分析运用分子标记技术(QTL)和差异蛋白组学技术研究作物化感作用分子机理的差异性。首先运用差异蛋白组学技术探讨在生物胁迫(稗草)下水稻化感作用潜力变化的内在分子机理。分别用稗草和水稻的根系分泌物培养切自一株5叶龄化感水稻P I312777植株并经恢复的2个分蘖。7d后,提取处理和对照相同叶位叶片的全蛋白质并进行双向电泳,每张电泳胶片上获得800多个电泳胶点,其中差异表达的蛋白质点有4个。采用M ALD I-TOF-M S对各差异蛋白质点进行肽质量指纹图谱分析,经过SW ISS-PROT数据库查询,结果表明化感水稻P I312777在稗草胁迫下的特异蛋白分别与苯丙氨酸氨解酶(PAL)、硫还原型蛋白(T rx-m)、3-羟基-3-甲基戊二酰辅酶A还原酶(HM GR)和过氧化物酶(POD)相匹配。根据编码以上4个差异蛋白质的DNA序列,发现编码以上4个差异蛋白的基因分别位于水稻染色体4、7、8和12上的特定克隆位点,这就是与化感作用相关基因。前人也运用QTL方法开展作物化感作用的分子机理研究,但由于所采用的供体材料、受体植物及对表型性状的评价方法等的不同,定位结果存在较大的差异。综合比较两种方法后认为,运用差异蛋白组学技术分析水稻化感作用的分子机理,比QTL技术更加直接和深入。因为比较胁迫处理和对照植物组织的2-DE图谱将能鉴定出由表达候选基因编码的胁迫蛋白质,氨基酸残基序列的测定将揭示那些功能与胁迫性状密切相关的蛋白质,这种编码的基因就是兼具功能与表达的候选基因。  相似文献   

7.
Cytochrome P450 BM-3 from Bacillus megaterium is an extensively studied enzyme for industrial applications. A major focus of current protein engineering research is directed to improving the catalytic performance of P450 BM-3 toward nonnatural substrates of industrial importance in the presence of organic solvents or cosolvents. For the latter reason, it is important to study the effect of organic cosolvent molecules on the structure and dynamics of the enzyme, in particular, the effect of cosolvent molecules on the active site's structure and dynamics. In this paper, we have studied, using molecular dynamics (MD) simulations, the F87A mutant of P450 BM-3 in the presence of DMSO as cosolvent, to understand the role of the F87A substitution for its catalytic activity. This mutant exhibits an altered regioselectivity and substrate specificity compared with wild-type; however, it has lower tolerance toward DMSO. The simulation results offer an explanation for the DMSO sensitivity of the F87A mutant. Our simulation results show that the F87 side chain prevents the disturbance of the water molecule bound to the heme iron by DMSO molecules. The absence of the phenyl ring in F87A mutant promotes interactions of the DMSO molecule with the heme iron resulting in water displacement by DMSO at the catalytic heme center.  相似文献   

8.
9.
10.
In this article the locations and histologic and ultrastructural features of all of the minor salivary glands of the rat are presented; similarities and differences among them are highlighted. These glands are almost as diverse morphologically as the major salivary glands of the rat. The acini of von Ebner's glands are serous; those of the anterior and posterior buccal glands and minor sublingual glands are mucous; and those of the glossopalatal, palatal, and Weber's glands are mucous with serous demilunes. The anterior buccal, minor sublingual and von Ebner's glands have striated and stratified columnar ducts, while only the minor sublingual and von Ebner's glands have intercalated ducts. The glossopalatal, palatal, posterior buccal and Weber's glands have none of these ducts; the tubulo-acini drain abruptly into short terminal ducts composed of stratified squamous epithelium. All of the mucous acini react with an antibody to a mucin (Muc19) of the rat major sublingual gland, but in some of the glands the reaction varies in intensity among the acinar cells. Ultrastructurally, the mucous secretory granules of the anterior buccal, glossopalatal, palatal and Weber's glands are biphasic, while those of the minor sublingual and posterior buccal glands are monophasic. Although there is a considerable body of literature concerning the development, innervation, physiology and proteomics of von Ebner's glands, investigation of the other minor salivary glands of the rat ranges from modest to nearly nonexistent.  相似文献   

11.
In this article the locations and histologic and ultrastructural features of all of the minor salivary glands of the rat are presented; similarities and differences among them are highlighted. These glands are almost as diverse morphologically as the major salivary glands of the rat. The acini of von Ebner's glands are serous; those of the anterior and posterior buccal glands and minor sublingual glands are mucous; and those of the glossopalatal, palatal, and Weber's glands are mucous with serous demilunes. The anterior buccal, minor sublingual and von Ebner's glands have striated and stratified columnar ducts, while only the minor sublingual and von Ebner's glands have intercalated ducts. The glossopalatal, palatal, posterior buccal and Weber's glands have none of these ducts; the tubulo-acini drain abruptly into short terminal ducts composed of stratified squamous epithelium. All of the mucous acini react with an antibody to a mucin (Muc19) of the rat major sublingual gland, but in some of the glands the reaction varies in intensity among the acinar cells. Ultrastructurally, the mucous secretory granules of the anterior buccal, glossopalatal, palatal and Weber's glands are biphasic, while those of the minor sublingual and posterior buccal glands are monophasic. Although there is a considerable body of literature concerning the development, innervation, physiology and proteomics of von Ebner's glands, investigation of the other minor salivary glands of the rat ranges from modest to nearly nonexistent.  相似文献   

12.
Pleotropic drug resistant protein 5 (Pdr5p) is a plasma membrane ATP-binding cassette (ABC) transporter and the major drug efflux pump in Saccharomyces cerevisiae. The Pdr5p family of fungal transporters possesses a number of structural features significantly different from other modeled or crystallized ABC transporters, which include a reverse topology, an atypical ATP-binding site, a very low sequence similarity in the transmembrane section and long linkers between domains. These features present a considerable hurdle in molecular modeling studies of these important transporters. Here, we report the creation of an atomic model of Pdr5p based on a combination of homology modeling and ab initio methods, incorporating information from consensus transmembrane segment prediction, residue lipophilicity, and sequence entropy. Reported mutations in the transmembrane substrate-binding pocket that altered drug-resistance were used to validate the model, and one mutation that changed the communication pattern between transmembrane and nucleotide-binding domains was used in model improvement. The predictive power of the model was demonstrated experimentally by the increased sensitivity of yeast mutants to clotrimazole having alanine substitutions for Thr1213 and Gln1253, which are predicted to be in the substrate-binding pocket, without reducing the amount of Pdr5p in the plasma membrane. The quality and reliability of our model are discussed in the context of various approaches used for modeling different parts of the structure.  相似文献   

13.
The complexity of Viperid venoms has long been appreciated by investigators in the fields of toxinology and medicine. However, it is only recently that the depth of that complexity has become somewhat quantitatively and qualitatively appreciated. With the resurgence of two-dimensional gel electrophoresis (2-DE) and the advances in mass spectrometry virtually all venom components can be visualized and identified given sufficient effort and resources. Here we present the use of 2-DE for examining venom complexity as well as demonstrating interesting approaches to selectively delineate subpopulations of venom proteins based on particular characteristics of the proteins such as antibody cross-reactivity or enzymatic activities. 2-DE comparisons between venoms from different species of the same genus (Bothrops) of snake clearly demonstrated both the similarity as well as the apparent diversity among these venoms. Using liquid chromatography/tandem mass spectrometry we were able to identify regions of the two-dimensional gels from each venom in which certain classes of proteins were found. 2-DE was also used to compare venoms from Crotalus atrox and Bothrops jararaca. For these venoms a variety of staining/detection protocols was utilized to compare and contrast the venoms. Specifically, we used various stains to visualize subpopulations of the venom proteomes of these snakes, including Coomassie, Silver, Sypro Ruby and Pro-Q-Emerald. Using specific antibodies in Western blot analyses of 2-DE of the venoms we have examined subpopulations of proteins in these venoms including the serine proteinase proteome, the metalloproteinase proteome, and the phospholipases A2 proteome. A functional assessment of the gelatinolytic activity of these venoms was also performed by zymography. These approaches have given rise to a more thorough understanding of venom complexity and the toxins comprising these venoms and provide insights to investigators who wish to focus on these venom subpopulations of proteins in future studies.  相似文献   

14.
Jockel P  Schmid M  Steuber J  Dimroth P 《Biochemistry》2000,39(9):2307-2315
The oxaloacetate decarboxylase Na+ pump consists of subunits alpha, beta, and gamma, and contains biotin as the prosthetic group. Membrane-bound subunit beta catalyzes the decarboxylation of carboxybiotin coupled to Na+ translocation, and consumes a periplasmically derived proton. Site-directed mutagenesis of conserved amino acids of transmembrane helix VIII indicated that residues N373, G377, S382, and R389 are functionally important. The polar side groups of these amino acids may constitute together with D203 a network of ionizable groups which promotes the translocation of Na+ and the oppositely oriented H+ across the membrane. Evidence is presented that two Na+ ions are bound simultaneously to subunit beta during transport with D203 and S382 acting as binding sites. Sodium ion binding from the cytoplasm to both sites elicits decarboxylation of carboxybiotin, and a conformational switch exposes the bound Na+ ions toward the periplasm. After dissociation of Na+ and binding of H+, the cytoplasmically exposed conformation is regained.  相似文献   

15.
16.
The Neotropical genus Heliconius (Nymphalidae) is unique among butterflies for its pollen-feeding behaviour. With the application of saliva, they extract amino acids from pollen grains on the outside of the proboscis. We predicted that the salivary glands of pollen-feeding Heliconiinae would show adaptations to this derived feeding behaviour. A biometrical analysis of the salivary glands revealed that pollen-feeding butterflies of the genus Heliconius have disproportionately longer and more voluminous salivary glands than nonpollen-feeding Nymphalidae. The first two components in the principal component analysis explained approximately 95% of the total variance. The size-dependent factor score coefficients of body length and salivary gland parameters were predominately represented on axis 1. They significantly discriminated pollen-feeding from nonpollen-feeding heliconiines on that axis. Factor score coefficients for the volume of the secretory region of the salivary glands separated heliconiines from the outgroup species. The detailed biometrical analysis of salivary glands features thus provides strong evidence that the secretory regions of the salivary glands are larger in pollen-feeding butterflies. We concluded that pollen feeding is associated with a high production of salivary fluid.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 604–612.  相似文献   

17.
Han Wen  Feng Qin  Wenjun Zheng 《Proteins》2016,84(12):1938-1949
As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high‐resolution closed and open structures of TRPV1 solved by cryo‐electron microscopy. In the closed‐state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open‐state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble‐based structural analyses of the closed state versus the open state, we revealed pronounced closed‐to‐open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open‐state specific hydrogen bonds. By comparing the closed‐state simulations at 30°C and 60°C, we observed heat‐activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed‐to‐open conformational changes, along with partial formation of the open‐state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938–1949. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Explants of scleral tissue from chick embryos of H.H. stage 29-36 (6-10 days of incubation) were used to determine if the epithelial-mesenchymal interaction which initiates scleral bone formation is cell contact, extracellular matrix, or diffusion mediated. Transfilter tissue recombinations, in which explanted interacting tissues are associated across interposing Nuclepore filters of various pore sizes and thicknesses, were performed with scleral mesenchyme and epithelium. When filters with pore sizes which would allow the passage of cell processes and diffusible substances were used, osteogenesis was initiated in the scleral mesenchyme. When cell processes were blocked with thicker filters or smaller pore sizes, bone formation still occurred, indicating that a diffusible substance mediates this tissue interaction. Further support for a diffusion-mediated interaction came from transfilter experiments using dialysis membranes to discriminate the size of the molecule(s), and Millipore filters to determine the distance over which these molecules travel. These experiments revealed that the scleral epithelial diffusible factor has a molecular weight of between 3500 and 6000 daltons, and acts over distances between 150 and 300 microns.  相似文献   

19.
20.
Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes reared on tryptophan treated larval water. Our results suggest that mosquito nutrition may have a significant impact on whole body and midgut XA levels in mosquitoes. We discuss the observed parasite infectivity results in relation to XA's relationship with malaria parasite development in mosquitoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号