首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transparent and bendable regenerated cellulose films prepared from aqueous alkali (NaOH or LiOH)/urea (AU) solutions exhibit high oxygen barrier properties, which are superior to those of conventional cellophane, poly(vinylidene chloride), and poly(vinyl alcohol). Series of AU cellulose films are prepared from different cellulose sources (cotton linters, microcrystalline cellulose powder, and softwood bleached kraft pulp) for different dissolution and regeneration conditions. The oxygen permeabilities of these AU cellulose films vary widely from 0.003 to 0.03 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity depending on the conditions used to prepare the films. The lowest oxygen permeability is achieved for the AU film prepared from 6 wt % cellulose solution by regeneration with acetone at 0 °C. The oxygen permeabilities of the AU cellulose films are negatively correlated with their densities, and AU films prepared from solutions with high cellulose concentrations by regeneration in a solvent at low temperatures generally have low oxygen permeabilities. The AU cellulose films are, therefore, promising biobased packaging materials with high-oxygen barrier properties.  相似文献   

2.
Lignocellulose containing 62% cellulose was prepared from corn residue by dilute acid hydrolysis using 5% H(2)SO(4) at 90 degrees C. The lignocellulose was then treated with a cellulose solvent consisting of a ferric sodium tartrate complex in 1.5N sodium hydroxide at levels ranging from 4:1 to 12:1 (solvent volume: corn residue lignocellulose) or a 1.5N sodium hydroxide solution alone. Subsequent hydrolysis with cellulase enzymes from Trichoderma reesei gave cellulose conversions which were two to three times higher than untreated lignocellulose (30%) and approached 90% conversion after 24 h in the best cases. It was found that increasing cellulase enzyme levels from 3.74 lU/g lignocellulose to 7.71 lU/g lignocellulose increased cellulose conversion by 50% at all pretreatment conditions, while an increase from 7.71 to 10.1 lU/g gave only an additional 5-10% increase. Pretreatment with sodium hydroxide resulted in 5-25% lower conversions than observed for cellulose treated with the solvent, depending on enzyme levels and treatment levels. At high enzyme levels, sodium hydroxide pretreatment is almost as effective in enhancing cellulose conversion after 24 h as is pretreatment using the cellulose solvent.  相似文献   

3.
Summary An anaerobic continuous culture device was constructed that permits accurate delivery of media containing insoluble substrates, even at very low volumetric flow rates (<3 ml/h). The system consisted of: (1) a reservoir in which the medium slurry was mixed well by the combined use of stirring and diffusive gas sparging to suspend a cellulose substrate of small (< 45 m) particle size; (2) a delivery system that segmented the slurry into small (~ 20l) discrete liquid segments separated by intervening bubbles of CO2 gas; and (3) a stirred, temperature-controlled 2-l fermentation vessel. The device was used to examine substrate consumption, product formation, and cell yield by the anaerobic ruminal cellulolytic bacterium Ruminococcus flavefaciens FD-1 under steady-state, cellulose-limited conditions at six different dilution rates (D) ranging from 0.017 to 0.101 h–1 (pH 6.4–6.6). Cellulose consumption decreased from 4.00 g/1 (at D=0.017 h–1) to 2.56 g/1 (at D=0.101 h–1). Increases in D resulted in a progressive shift toward production of more acetate and formate, and less succinate. Redox balance calculations revealed a deficiency in reduced products, probably due to the production of H2, which was not directly measured. Reducing sugar values remained low (0.05–0.10 g/1, as glucose) at all D values. The cellulose fermentation was characterized by a low maintenance coefficient (0.07 g cellulose/g cells per hour) and a high true growth yield (YG = 0.24 g cells/g cellulose, corrected for maintenance). Comparison of the data with literature values suggests that the fermentation of cellulose by this organism gives cell yields at least as great as the yields obtained from the fermentation of soluble sugars.Mention of specific products is for the benefit of the reader and does not constitute an endorsement of said products over other products not mentionedOffprint requests to: P. J. Weimer  相似文献   

4.
The adsorption of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) on cellulose supports were investigated. The dynamics and extent of related adsorption processes were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Amine groups were installed on the cellulose substrate by adsorption of chitosan from aqueous solution, which allowed for hIgG to physisorb from acid media and produced a functionalized substrate with high surface density (10 mg/m(2)). hIgG adsorption from neutral and alkaline conditions was found to yield lower adsorbed amounts. The installation of the carboxyl groups on cellulose substrate via carboxymethylated cellulose (CMC) adsorption from aqueous solution enhanced the physisorption of hIgG at acidic (adsorbed amount of 5.6 mg/m(2)) and neutral conditions. hIgG adsorption from alkaline conditions reduced the surface density. BSA was used to examine protein attachment on cellulose after modification with chitosan or carboxymethyl cellulose. At the isoelectric point of BSA (pI 5), both of the surface modifications enhanced the adsorption of this protein when compared to that on unmodified cellulose (a 2-fold increase from 1.7 to 3.5 mg/m(2)). At pH 4, the electrostatic interactions favored the adsorption of BSA on the CMC-modified cellulose, revealing the affinity of the system and the possibility of tailoring biomolecule binding by choice of the surface modifier and pH of the medium.  相似文献   

5.
Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30mmol KBrO(3) and 30mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50°C using a material to liquor ratio of 1:10.  相似文献   

6.
Three strains of Clostridium thermocellum obtained from various sources were found to have nearly identical deoxyribonucleic acid guanosine plus cytosine contents that ranged from 38.1–39.5 mole-%. All strain examined fermented only cellulose and cellulose derivatives, but not glucose, or xylose or other sugars. The principal cellulose fermentation products were ethanol, lactate, acetate, hydrogen and carbon dioxide. Growth of C. thermocellum on cellulose resulted in the production of extracellular cellulase that was non-oxygen labile, was thermally stable at 70° C for 45 min and adsorbed strongly on cellulose. Production of cellulase during fermentation correlated linearly with growth and cellulose degradation. Both the yield and specific activity of crude cellulase varied considerably with the specific growth substrates. Highest cellulase yield was obtained when grown on native cellulose, -cellulose and low degree of polymerization cellulose but not carboxymethylcellulose or other carbohydrate sources. Cellulase activity was not detected when cells were grown on cellobiose. Crude extracellular protein preparations lacked proteolytic and cellobiase activity. The pH and temperafure optima for endoglucanase activity were 5.2 and 65° C, respectively, while that of the exoglucanase activity were 5.4 and 64° C, respectively. The specific activity at 60° c for exoglucanase and endoglucanase of crude cellulase obtained from cells grown on cellulose (MN 300) was 3.6 moles reducing sugar equivalents released per h (unit)/mg of protein and 1.5 mole reducing sugar equivalent released per min (unit)/mg of protein, respectively. The yield of endoglucanase was 125 units per g of cellulose MN 300 degraded and that of exoglucanase was 300 units per g of cellulose MN 300 degraded. Glucose and cellobiose were the hydrolytic end products of crude cellulase action on cellulose, cellotraose and cellotriose in vitro.  相似文献   

7.
The surface are and crystallinity was measured on a cellulose powder made from Cladophora sp. algae. The algae cellulose powder was found to have a very high surface area (63.4 m2/g, N2 gas adsorption) and build up of cellulose with a high crystallinity (approximately 100%, solid state NMR). The high surface area was confirmed by calculations from atomic force microscope imaging of microfibrils from Cladophora sp. algae.  相似文献   

8.
The present work proposes to analyse the results obtained under in vitro conditions where cellulose artificial membranes were incubated with biological fluids from the freshwater bivalve Anodonta cygnea. The membranes were mounted between two half ‘Ussing chambers’ with different composition solutions in order to simulate epithelial surfaces separating organic fluid compartments. The membrane surfaces were submitted to two synthetic calcium and phosphate solutions on opposite sides, at pH 6.0, 7.0 or 9.0 during a period of 6 hours. Additional assays were accomplished mixing these solutions with haemolymph or extrapallial fluid from A. cygnea, only on the calcium side. A selective ion movement, mainly dependent on the membrane pore size and/or cationic affinity, occurred with higher permeability for calcium ions to the opposite phosphate chamber supported by calcium diffusion forces across the cellulose membrane. In general, this promoted a more intense mineral precipitation on the phosphate membrane surface. A strong deposition of calcium phosphate mineral was observed at pH 9.0 as a primary layer with a homogeneous microstructure, being totally absent at pH 6.0. The membrane showed an additional crystal phase at pH 7.0 exhibiting a very particular hexagonal or cuttlebone shape, mainly on the phosphate surface. When organic fluids of A. cygnea were included, these crystal forms presented a high tendency to aggregate under rosaceous shapes, also predominantly in the phosphate side. The cellulose membrane was permeable to small organic molecules that diffused from the calcium towards the phosphate side. In the calcium side, very few similar crystals were observed. The presence of organic matrix from A. cygnea fluids induced a preliminary apatite–brushite crystal polymorphism. So, the present results suggest that cellulose membranes can be used as surrogates of biological epithelia with preferential ionic diffusion from the calcium to the phosphate side where the main mineral precipitation events occurred. Additionally, the organic fluids from freshwater bivalves should be also thoroughly researched in the applied biomedical field, as mineral nucleators and crystal modulators on biosynthetic systems.  相似文献   

9.

Background

The analysis of cellulose molecular weight distributions by gel permeation chromatography (GPC) is a powerful tool to obtain detailed information on enzymatic cellulose hydrolysis, supporting the development of economically viable biorefinery processes. Unfortunately, due to work and time consuming sample preparation, the measurement of cellulose molecular weight distributions has a limited applicability until now.

Results

In this work we present a new method to analyze cellulose molecular weight distributions that does not require any prior cellulose swelling, activation, or derivatization. The cellulose samples were directly dissolved in dimethylformamide (DMF) containing 10-20% (v/v) 1-ethyl-3-methylimidazolium acetate (EMIM Ac) for 60?minutes, thereby reducing the sample preparation time from several days to a few hours. The samples were filtrated 0.2?μm to avoid column blocking, separated at 0.5?mL/min using hydrophilic separation media and were detected using differential refractive index/multi angle laser light scattering (dRI/MALLS). The applicability of this method was evaluated for the three cellulose types Avicel, α-cellulose and Sigmacell. Afterwards, this method was used to measure the changes in molecular weight distributions during the enzymatic hydrolysis of the different untreated and ionic liquid pretreated cellulose substrates. The molecular weight distributions showed a stronger shift to smaller molecular weights during enzymatic hydrolysis using a commercial cellulase preparation for cellulose with lower crystallinity. This was even more pronounced for ionic liquid-pretreated cellulose.

Conclusions

In conclusion, this strongly simplified GPC method for cellulose molecular weight distribution allowed for the first time to demonstrate the influence of cellulose properties and pretreatment on the mode of enzymatic hydrolysis.
  相似文献   

10.
In a previous work, chemically modified cellulose (EMC) and sugarcane bagasse (EMMB) were prepared from mercerized cellulose (MC) and twice-mercerized sugarcane bagasse (MMB) using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent. In this work we described in detail the modification of these materials in function of reaction time and EDTAD amount in the reaction media. The resistance of ester bond at pH 1, 2, 11, and 12 was also evaluated by FTIR. The results were used to model the hydrolysis process and a kinetic model was proposed. The modified materials (EMMB and EMC) were used to adsorb Ca2+ and Mg2+ ions from aqueous single solutions. The adsorption isotherms were developed at two pH values. These materials showed maximum adsorption capacities for Ca2+ and Mg2+ ions ranging from 15.6 to 54.1 mg/g and 13.5 to 42.6 mg/g, respectively. The modified material from sugarcane bagasse (EMMB) showed larger maximum adsorption capacities than modified material from cellulose (EMC) for both metals.  相似文献   

11.
Summary The concept of the cell wall organized in a helicoidal pattern was outlined. When studied in transmission electron microscopy, the observed textures appear as a deceptive figure,i.e., as a trompe l'oeil. Difficulties—both technological and visual in the reconstitution of the actual geometry (exposure of the microfibrillar framework, 3-dimensional and 4-dimensional restoration), and the interest of simple modelling to understand the changes in cellulose orientation according to space and time are emphasized.The morphogenesis of helicoidal walls presents two main characteristics: it is both very defined and flexible, thus adaptable to varied programs of differentiation and to different environmental conditions. The observations of various cell examples and of responses to experimental treatments, lead to the following considerations: a) the shift of cellulose occurs continuously with time through a constant mutual angle. The wall seems to be built up as an indefinite continuum and forms a monotonous oscillatory system (unvarying motion); b) the shift of cellulose occurs through a mutual angle variable with time (varying motion, change from monotonous helicoid to bimodal helicoid, or sporadic bursts with arrested motion).The helicoidal wall appears as a fibrous composite with multifunctional possibilities ranging from fluidity to stiffness. The helicoidal assembly is remarkably adaptable to different physiological conditions of growth and specialization.  相似文献   

12.
Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.  相似文献   

13.
With respect to the fact that persimmon leaves having better effects on medical area applications, a persimmon leaves/cellulose blend fiber was prepared by wet spinning from a DMSO/polyoxymethylene solvent under different spinning conditions, e.g. the temperature of coagulation bath, amount of persimmon leaves added and concentration of spinning solution. Based on mechanical measurement, X-ray diffraction and DSC characterization, it was found that this blend fiber had similar mechanical and thermal properties as referenced cellulose fiber obtained using the same method.  相似文献   

14.
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h−1, biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose liter−1 the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose liter−1, respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose liter−1. Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119–130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and qNADH produced/qNADH used ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327–335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells−1 h−1 could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells−1 h−1; (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.  相似文献   

15.
Copolymers containing cellulose triacetate were prepared under various conditions. A bacteriological plastic dish was coated with the copolymer (HCTA-MDI copolymer) composed of hydrolysed cellulose triacetate (HCTA) and diphenylmethane diisocyanate (MDI). The deacetylated copolymer (DA-copolymer) was prepared by the deacetylation of HCTA-MDI copolymer. The behaviour of animal cells such as a mouse macrophage cell line (A640-BB-2 cells) and a mouse fibroblast (3T6 cells) on prepared dishes was investigated morphologically. A640-BB-2 cells showed good adhesion and smooth spreading, and 3T6 cells also showed good adhesion and sufficient cell growth on the dish coated with HCTA-MDI copolymer. These results suggest that these copolymers are useful for biomedical materials.  相似文献   

16.
Blends of chitosan and cellulose were successfully produced using 1-butyl-3-methylimidazolium acetate (BMIMAc) as solvent media. Films were prepared from the blends by manually spreading the solution on a flat surface and precipitating the polymers in a mixture of methanol and water. To prevent the shrinkage of films, most of the absorbed water was removed by freeze drying under vacuum. Films prepared from the polymeric solutions were investigated by means of FT-IR, TGA, X-ray diffraction and SEM measurements. The shifting of the bands corresponding to -NH and CO groups of chitosan (FT-IR), the absence of the diffraction peaks at 2θ = 10.7 and 14.9° (XRD), the increased Ea for thermal decomposition for all the polymeric blends (MTGA), and the presence of an apparent homogeneous structure with no phase separation of the two polymers (SEM) provide evidence for the miscibility between chitosan and cellulose in the solid state.  相似文献   

17.
Microbial fuel cells (MFCs) have been used to generate electricity from various organic compounds such as acetate, glucose, and lactate. We demonstrate here that electricity can be produced in an MFC using cellulose as the electron donor source. Tests were conducted using two-chambered MFCs, the anode medium was inoculated with mixed or pure culture of cellulose-degrading bacteria Nocardiopsis sp. KNU (S strain) or Streptomyces enissocaesilis KNU (K strain), and the catholyte in the cathode compartment was 50mM ferricyanide as catholyte. The power density for the mixed culture was 0.188mW (188mW/m(2)) at a current of 0.5mA when 1g/L cellulose was used. However, the power density decreased as the cellulose concentration in the anode compartment decreased. The columbic efficiencies (CEs) ranged from 41.5 to 33.4%, corresponding to an initial cellulose concentration of 0.1-1.0g/L. For the pure culture, cellobioase enzyme was added to increase the conversion of cellulose to simple sugars, since electricity production is very low. The power densities for S and K strain pure cultures with cellobioase were 162mW/m(2) and 145mW/m(2), respectively. Cyclic voltammetry (CV) experiments showed the presence of peaks at 380, 500, and 720mV vs. Ag/AgCl for the mixed bacterial culture, indicating its electrochemical activity without an external mediator. Furthermore, this MFC system employs a unique microbial ecology in which both the electron donor (cellulose) and the electron acceptor (carbon paper) are insoluble.  相似文献   

18.
O-(2-Hydroxyethyl)cellulose (1) as formed by the alkali-catalyzed addition of ethylene oxide to cellulose flock in a slurry process is not uniformly substituted. Most of the ethylene oxide adds to HO-6 in a chain-fashion, so that ~20% of the d-glucose residues remain totally unsubstituted at 2.0 molar substitution. Consequently, an aqueous solution thickened by 1 is highly susceptible to enzymic degradation. Stepwise decrease in concentration of alkali during etherification gives improved stability to enzymic degradation associated with a more-uniform distribution of hydroxyethyl groups between the three hydroxyl groups of the glucose residues in cellulose. The relative reactivities of hydroxyl groups and patterns of substitution were established by matching the distribution patterns from a stochastic computer-model with the distribution of substituents as determined by chemical analyses [namely hydrolysis with sulfuric acid to determine the percentage of unsubstituted glucose residues (u-2) and with periodate oxidation for determining the percentage of unsubstituted 2,3-vicinal diol groups per residue]. The reactivities of the three hydroxyl groups at various alkali concentrations in a heterogeneous, slurry-addition process approximate those observed under homogeneous conditions, wherein the reactivities have been determined by tedious chromatographic analyses. In the variable-alkali procedure for addition of ethylene oxide, the amount of water available to the cellulose matrix in the low-alkali (m) sequence is important both for the stability to enzymic degradation and for obtaining gel-free, thickened, aqueous solutions. Optimal stabilities and gel-free solutions are observed at intermediate water: cellulose ratios of 1.10–1.23. At a ratio of 1.23, the stability to enzymic degradation is less sensitive to percentage variations of u-2 than in 1 prepared at higher or lower water: cellulose ratios. Although the initial degree of degradation between 1 of high molar substitution prepared at 6.8m alkali concentration and a similar product prepared under variable alkali conditions may be related to percentage differences of u-2, the rate and final degree of degradation do not relate to percentage differences of u-2. An adequate interpretation, utilizing known cellulase turnover-rates, is found in stochastic-model projections of the distribution of consecutive 2 residues not substituted at HO-2. The results indicate that (1) more-uniform substitution through equalization of hydroxyl reactivities is achieved by lowering the alkali concentration, and (2) more-uniform substitution of 2 of the many cellulose-chains being substituted is achieved by employing an optimal amount of “available” water during etherification.  相似文献   

19.
Phalaris aquatica L., a rich in holocellulose (69.80 %) and deficient in lignin (6.70 %) herbaceous, perennial grass species, was utilized in a two-step (biomass pretreatment-enzymatic hydrolysis) saccharification process for sugars recovery. The Taguchi methodology was employed to determine the dilute acid pretreatment and enzymatic hydrolysis conditions that optimized hemicellulose conversion (75.04 %), minimized the production of inhibitory compounds (1.41 g/L), and maximized the cellulose to glucose yield (69.69 %) of mixed particulate biomass (particles <1000 μm) under batch conditions. The effect of biomass particle size on saccharification process efficiency was also investigated. It was found that small-size biomass particles (53–106 μm) resulted in maximum hemicellulose conversion (81.12 %) and cellulose to glucose yield (93.24 %). The determined optimal conditions were then applied to a combined batch pretreatment process followed by a fed-batch enzymatic hydrolysis process that maximized glucose concentration (62.24 g/L) and yield (92.48 %). The overall efficiency of the saccharification process was 88.13 %.  相似文献   

20.
A novel adsorbent, biodegradable collagen/cellulose hydrogel beads (CCHBs), was prepared by reconstitution from a 1-butyl, 3-methylimidazolium chloride ([C4mim]Cl) solution. The adsorption properties of the CCHBs for Cu(II) ion removal from aqueous solutions were investigated and compared with those of cellulose hydrogel beads (CHBs). The CCHBs have a three-dimensional macroporous structure whose amino groups are believed to be the main active binding sites of Cu(II) ions. The equilibrium adsorption capacity (qe) of the CCHBs is greatly influenced by the collagen/cellulose mass ratio, and steeply increases until the collagen/cellulose mass ratio exceeds 2/1. The maximum adsorption is obtained at pH 6. The qe of Cu(II) ions increases with increased initial concentration of the solution. Based on Langmuir isotherms, the maximum adsorption capacity (qm) of CCHB3 (collagen/cellulose mass ratio of 3/1) is 1.06 mmol/g. The CCHBs maintain good adsorption properties after the fourth cycle of adsorption–desorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号