首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
短发夹结构RNA干扰新城疫病毒的增殖   总被引:4,自引:0,他引:4  
 以新城疫病毒(NDV)NP基因为标靶,构建3个细胞内表达发夹样结构小干扰RNA(shRNA)的质粒载体,在鸡胚成纤维细胞(CEF)和鸡胚上进行了RNAi试验,筛选出一个有效抑制病毒复制的小分子ndv1.用阳离子脂质体转染试剂Silent-fect 将ndv1转染CEF,以不相关shRNA质粒载体HK为阴性对照,4 h后接种NDV,与对照相比,干涉组在病毒感染后3 h NP基因的表达量降低2.3倍,6 h 降低21.1倍,9 h降低9.8倍;ndv1能在48 h内完全阻断NDV在CEF中的增殖,延缓病变出现时间,减轻病变程度.将Silent-fect-ndv1混合物与NDV同时注入10日龄SPF鸡胚绒毛尿囊腔,能使105 ELD50NDV感染后17 h鸡胚尿囊液中病毒增殖量减少94.4%,使106 ELD50NDV感染后17 h鸡胚尿囊液中病毒增殖量减少62.5%.实验结果证实,在CEF中存在RNAi机制,抑制NDV NP基因的表达能有效阻断该病毒增殖,说明NP基因在NDV复制过程中起重要作用.实验结果为进一步利用RNAi技术在CEF和鸡胚中研究病毒基因组功能及筛选抗病毒小分子奠定了基础.  相似文献   

2.
3.
Li B  Fu D  Zhang Y  Xu Q  Ni L  Chang G  Zheng M  Gao B  Sun H  Chen G 《Molecular biology reports》2012,39(8):8415-8424
Conflicting data existed for the antiviral potential of the chicken Mx protein and the importance of the Asn631 polymorphism in determination of the antiviral activity. In this study we modified the chicken Mx cDNA from the Ser631 to Asn631 genotype and transfected them into COS-I cells, chicken embryonic fibroblast (CEF) or NIH 3T3 cells. The Mx protein was mainly located at the cytoplasm. The transfected cell cultures were challenged with newcastle disease virus (NDV) or vesicular stomatitis virus (VSV), cytopathic affect (CPE) inhibition assay showed that the times for development of visible and full CPE were significantly postponed by the Asn631 cDNA transfection at 48 h transfection, but not by the Ser631 cDNA transfection. Viral titration assay showed that the virus titers were significantly reduced before 72 h postinfection. CEF cells was incubated by the cell lysates extracted from the COS-I cells transfected with pcDNA-Mx/Asn631, could resist and delayed NDV infection. These data suggested the importance of the Asn631 polymorphism of the chicken Mx in determination of the antiviral activities against NDV and VSV at early stage of viral infection, which were relatively weak and not sufficient to inhibit the viral replication at late stage of viral infection.  相似文献   

4.
Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms. RNAi based on DNA vector is not sufficiently established in chicken species. The present study was performed to evaluate RNAi induced by shRNA transcribed from mammalian Pol III promoter H1 in the chicken cells by using a dual fluorescence reporter assay, a plasmid encoding GFP and a plasmid encoding RFP. The evaluation of RNAi efficiency was performed in two kinds of chicken cell type: primary CEF cells and chicken DT-40 cells by lipofection. GFP- and RFP-expressing cells were observed under fluorescent microscopy, and their mRNAs content were analyzed by quantitative RT-PCR. The intensity of the green fluorescence generated by GFP was greatly suppressed by human H1 promoter transcribed GFP-shRNA. Quantitative RT-PCR analysis showed that normalized GFP mRNA expression was reduced to 37 and 32 in primary CEF and DT-40 cells, respectively. In contrast to GFP, the intensity of the red fluorescence generated by RFP protein and the RFP mRNA levels remained unchanged. Consequently, it was concluded that the RNAi induced by shRNA transcribed from mammalian Pol III promoter H1 is applicable to suppress the gene expression specifically and efficiently in chicken cells. Jing Yuan and Xiaobo Wang - These authors contributed equally to this work.  相似文献   

5.
Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µg. The result showed ~95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro.  相似文献   

6.
鸡传染性支气管炎病毒的RNA干扰   总被引:4,自引:0,他引:4  
为探讨短的双链RNA(siRNA)对鸡传染性支气管炎病毒(IBV)增殖的干扰作用,利用软件设计siRNA1280个,75%位于Pol基因内。通过同源比较和保守性分析,筛选到针对Pol、M、N基因的12个siRNA(每个基因3~4个)作为后选目的片段,分别在Vero细胞、9日龄SPF鸡胚上进行基因干扰试验。结果,来自Pol、N靶序列的2个siRNA在Vero细胞上及鸡胚上均对IBV增殖产生明显的干扰作用,并与siRNA剂量有一定相关性,依赖于与mRNA互补的负链siRNA存在。本研究首次证实IBV增殖过程中存在siRNA干扰现象,为利用RNA干扰(RNAi)技术控制IBV提供了新手段。  相似文献   

7.
Highly attenuated modified vaccinia virus Ankara (MVA) serves as a candidate vaccine to immunize against infectious diseases and cancer. MVA was randomly obtained by serial growth in cultures of chicken embryo fibroblasts (CEF), resulting in the loss of substantial genomic information including many genes regulating virus-host interactions. The vaccinia virus interferon (IFN) resistance gene E3L is among the few conserved open reading frames encoding viral immune defense proteins. To investigate the relevance of E3L in the MVA life cycle, we generated the deletion mutant MVA-DeltaE3L. Surprisingly, we found that MVA-DeltaE3L had lost the ability to grow in CEF, which is the first finding of a vaccinia virus host range phenotype in this otherwise highly permissive cell culture. Reinsertion of E3L led to the generation of revertant virus MVA-E3rev and rescued productive replication in CEF. Nonproductive infection of CEF with MVA-DeltaE3L allowed viral DNA replication to occur but resulted in an abrupt inhibition of viral protein synthesis at late times. Under these nonpermissive conditions, CEF underwent apoptosis starting as early as 6 h after infection, as shown by DNA fragmentation, Hoechst staining, and caspase activation. Moreover, we detected high levels of active chicken alpha/beta IFN (IFN-alpha/beta) in supernatants of MVA-DeltaE3L-infected CEF, while moderate IFN quantities were found after MVA or MVA-E3rev infection and no IFN activity was present upon infection with wild-type vaccinia viruses. Interestingly, pretreatment of CEF with similar amounts of recombinant chicken IFN-alpha inhibited growth of vaccinia viruses, including MVA. We conclude that efficient propagation of MVA in CEF, the tissue culture system used for production of MVA-based vaccines, essentially requires conserved E3L gene function as an inhibitor of apoptosis and/or IFN induction.  相似文献   

8.
在重组禽痘病毒中表达多个禽类病原的主要免疫原基因是构建多价基因工程疫苗的前提,但相关研究很少。在表达传染性喉气管炎病毒(ILTV)gB基因重组禽痘病毒的转移载体的基础上,构建了含有ILTV gB基因和新城疫病毒(NDV)F基因的重组禽痘病毒转移载体pSY-gB-F,采用脂质体转染禽痘病毒感染的鸡胚成纤维(CEF)细胞后,通过蓝斑试验筛选出重组禽痘病毒(rFPv-gB-F),并进行了6轮蚀斑纯化。Western-blot试验和间接免疫荧光试验证明ILTV gB基因和NBVF基因在rFPV-gB-F感染的CEF细胞中获得表达。为传染性喉气管炎、新城疫与鸡痘活载体多价疫苗的研制奠定基础。  相似文献   

9.
To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP (I)109(T)). By analyzing viruses constructed by the reverse-genetic method, we established that the NP (I)109(T) substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP (I)109(T) substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP (I)109(T) substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP (I)109(T) mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains.  相似文献   

10.
选取13株国内2001~2004年分离的新城疫流行病毒(Newcastle disease virus,NDV),经蚀斑纯化,克隆其融合蛋白(F)和血凝素.神经氨酸酶(HN)基因,结合疫苗株La Sota、Clone30和国内标准强毒株F48E9等的基因序列,进行遗传变异分析.利用纯化的病毒制备特异阳性血清,进行鸡胚交叉中和试验,确定不同NDV毒株之间的抗原相关性,并与NDV不同毒株之间的HN和F基因核苷酸(氨基酸)同源性进行相关比较.结果表明:病毒中和指数与HN基因的核苷酸(氨基酸)同源性显著相关(P<0.01,r=-0.35),与F基因呈弱相关(P<0.05,r=0.20),而与F基因前374bp的核甘酸同源性不相关.这表明,NDV的分子变异已经对NDV的抗原性变异产生了影响,研制新型的疫苗成为必然.  相似文献   

11.
[目的]获得共表达H5亚型AIV HA基因和鸡IL-18基因的重组禽痘病毒.[方法]将含痘病毒启动子LP2EP2的HA基因和鸡IL-18基因插入到禽痘病毒转移载体pSY681中,获得重组转移载体pSYHA/IL-18.用脂质体将其转染已感染亲本禽痘病毒S-FPV-017株的鸡胚成纤维细胞,使其在鸡胚成纤维细胞内与禽痘病毒基因组发生同源重组,产生表达HA和IL-18的重组禽痘病毒(rFPV-HA-IL-18).在含有X-gal的营养琼脂培养基上进行蓝斑筛选后,对重组禽痘病毒又进行了多次蚀斑克隆.[结果]以重组禽痘病毒DNA为模板,利用HA基因和鸡IL-18基因引物进行PCR,分别扩增出1条约1.7 kb带和1条0.6 kb左右的带.以间接免疫荧光试验、T细胞转化试验和SPF雏鸡免疫接种证实重组禽痘病毒能表达HA和鸡IL-18,并初步证明鸡IL-18增强HA免疫作用.[结论]重组禽痘病毒能表达具有生物学活性的HA和鸡IL-18.  相似文献   

12.
RNA interference (RNAi) has recently shown promise as a mode of inhibition of slowly replicating viruses causing chronic diseases such as hepatitis C. To investigate whether RNAi is also feasible for rapidly growing RNA viruses such as alphaviruses, we tested the ability of expressed short hairpin RNAs (shRNAs) to inhibit the Semliki Forest virus (SFV), a rapidly replicating positive-strand RNA virus. Plasmids expressing shRNAs targeting SFV target sequences under the control of a human U6 promoter were introduced into BHK-21 cells. The targets included sequences encoding nonstructural (nsP1, 2, and 4) and structural (capsid) proteins as well as nonviral sequences serving as control targets. Twenty-four to 48 hours following transfection with shRNA plasmids, the cells were infected with replication-competent or replication-deficient recombinant SFV expressing green fluorescent protein (GFP) at a multiplicity of infection (MOI) of approximately 5. Viral replication was monitored by fluorescence microscopy and flow cytometry. Specific and marked reduction of viral replication was observed with shRNAs targeting nsP1 and nsP4. The degree of inhibition of the replication-deficient SFV was >or=70% over a 5-day period, a level similar to the transfection efficiency, suggesting complete inhibition of nonreplicating virus in the transfected cell population. However, only nsP1 shRNA was inhibitory against replication-competent SFV (approximately 30%-50% reduction), and this effect was transient. No inhibition was observed with control shRNAs. In contrast to the recent success of RNAi approaches for slowly growing viruses, these results illustrate the challenge of inhibiting very rapidly replicating RNA viruses by RNAi. However, the addition of RNAi approaches to other antiviral modalities might improve the response to acute infections.  相似文献   

13.
将将城疫病毒(NDV)F48E8株融合蛋白基因导入鸡痘病毒(FPV)插入载体pEGF1175-1的P7.5启动子下游,得到转移载体pFG1175-1重组质粒。采用脂质体转染技术,将该质粒转染FPV282E株感染的鸡胚成纤维细胞(CEF)。,经过多次蓝斑筛选纯化,获稳定的重组病毒rFPV-NDF。间接免疫荧光试验表明,rFPV-NDF感染的CEF中表达了NDV的融合蛋白。用rFPV-NDF免疫的SF  相似文献   

14.
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.  相似文献   

15.
Newcastle disease virus (NDV) is an important avian pathogen. We previously reported that NDV triggers autophagy in U251 glioma cells, resulting in enhanced virus replication. In this study, we investigated whether NDV triggers autophagy in chicken cells and tissues to enhance virus replication. We demonstrated that NDV infection induced steady-state autophagy in chicken-derived DF-1 cells and in primary chicken embryo fibroblast (CEF) cells, evident through increased double- or single-membrane vesicles, the accumulation of green fluorescent protein (GFP)-LC3 dots, and the conversion of LC3-I to LC3-II. In addition, we measured autophagic flux by monitoring p62/SQSTM1 degradation, LC3-II turnover, and GFP-LC3 lysosomal delivery and proteolysis, to confirm that NDV infection induced the complete autophagic process. Inhibition of autophagy by pharmacological inhibitors and RNA interference reduced virus replication, indicating an important role for autophagy in NDV infection. Furthermore, we conducted in vivo experiments and observed the conversion of LC3-I to LC3-II in heart, liver, spleen, lung, and kidney of NDV-infected chickens. Regulation of the induction of autophagy with wortmannin, chloroquine, or starvation treatment affects NDV production and pathogenesis in tissues of both lung and intestine; however, treatment with rapamycin, an autophagy inducer of mammalian cells, showed no detectable changes in chicken cells and tissues. Moreover, administration of the autophagy inhibitor wortmannin increased the survival rate of NDV-infected chickens. Our studies provide strong evidence that NDV infection induces autophagy which benefits NDV replication in chicken cells and tissues.  相似文献   

16.
新城疫病毒是理想的新型活病毒疫苗载体,具有巨大的优势和应用前景。采用生产实践中广泛应用、免疫效果良好的NDV LaSota弱毒疫苗株,建立了反向遗传操作系统。在此基础上,进一步构建了表达绿色荧光蛋白(GFP)的重组NDV基因组cDNA克隆,成功救获了重组病毒rLaSota-EGFP,病毒F1代尿囊病毒液按1×104EID50接种9~10日龄SPF鸡胚尿囊腔,接种后分别于24h、48h、72h及96h收获尿囊液,检测平均HA滴度分别为28、210.3、211.3和211,每mL尿囊液病毒量EID50分别为108.64、109.22、109.21和109.64,重组病毒与亲本株生长滴度在相近时间达到峰值,生长动力学特性与亲本株无明显差异。各代次重组病毒按1×106EID50病毒量接种9~10日龄SPF鸡胚,96h内完全不致死鸡胚。救获重组病毒保持了LaSota弱毒疫苗亲本毒株对鸡胚良好的高滴度生长适应和低致病特性,并且鸡胚连续传9代次仍保持GFP的稳定表达及生物学特性不变。重组病毒rLaSota-EGFP的成功救获为开展新城疫病毒活载体疫苗研制提供了可行的技术平台。  相似文献   

17.
RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection.  相似文献   

18.
在克隆和鉴定新城疫病毒(NDV)F48E8株血凝素-神经氨酸酶(HN)基因的基础上,应用分子克隆技术将HN基因导入鸡痘病毒插入载体pFG1175-1中启动子P7.5的下游,得到携带NDV-HN基因的质粒pFGHN1175-1。将此质粒pFGHN1175-1以脂质体转染中国鸡痘病毒疫苗株282E4株感染3 ̄4h的鸡胚成纤维细胞,采用蓝斑筛选方法纯化3次,得到稳定的重组鸡痘病毒。用NDV-HN基因特异  相似文献   

19.
We have generated a recombinant Newcastle disease virus (NDV) that expresses the green fluorescence protein (GFP) in infected chicken embryo fibroblasts (CEFs). This virus is interferon (IFN) sensitive, and pretreatment of cells with chicken alpha/beta IFN (IFN-alpha/beta) completely blocks viral GFP expression. Prior transfection of plasmid DNA induces an IFN response in CEFs and blocks NDV-GFP replication. However, transfection of known inhibitors of the IFN-alpha/beta system, including the influenza A virus NS1 protein and the Ebola virus VP35 protein, restores NDV-GFP replication. We therefore conclude that the NDV-GFP virus could be used to screen proteins expressed from plasmids for the ability to counteract the host cell IFN response. Using this system, we show that expression of the NDV V protein or the Nipah virus V, W, or C proteins rescues NDV-GFP replication in the face of the transfection-induced IFN response. The V and W proteins of Nipah virus, a highly lethal pathogen in humans, also block activation of an IFN-inducible promoter in primate cells. Interestingly, the amino-terminal region of the Nipah virus V protein, which is identical to the amino terminus of Nipah virus W, is sufficient to exert the IFN-antagonist activity. In contrast, the anti-IFN activity of the NDV V protein appears to be located in the carboxy-terminal region of the protein, a region implicated in the IFN-antagonist activity exhibited by the V proteins of mumps virus and human parainfluenza virus type 2.  相似文献   

20.
目的:预防马立克氏病病毒(MDV)和新城疫病毒(NDV)混合感染鸡引起的疾病,构建表达NDV F蛋白的MDV疫苗株CVI988 BAC重组载体,并包装成重组病毒,为疫苗免疫提供更多的重组疫苗选择。方法:首先利用PCR扩增带有卡那霉素(Kanamycin,Kana)抗性基因片段的F基因,采用同源重组的方法将其整合到CVI988 BAC上,进一步诱导I-SceI表达敲除Kana基因而获得重组质粒CVI988 BAC-F。通过磷酸钙法转染鸡胚成纤维细胞获得重组病毒。结果:Western blot和间接免疫荧光实验证实重组病毒能够表达F蛋白。病毒生长曲线和蚀斑大小测定结果表明,F基因的插入不影响病毒的体外增殖。结论:利用BAC技术成功构建了整合F基因的重组MDV病毒CVI988 BAC-F,为MDV重组疫苗研发,防控NDV与MDV共感染奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号