首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The embryological characters of Megacodon stylophorus (C. B. Clark) H. Smith and Veratrilla baillonii Franch. are described for the first time and the systematic relationships of Megacodon and Veratrilla are discussed. Both species share the following embryological features. The anthers are tetrasporangiate. The formation of anther walls is of the Dicotyledonous Type. The tapetum is of glandular type with uninucleate cells which have a dual origin. The tapetal cells on the connective side show radial elongation or periclinal division and intrude into the anther locule to form 'placentoids'. Cytokinesis in the microsporocyte meiosis is of the simultaneous type and the microspore tetrads are nearly always tetrahedral, rarely decussate. The ovary is bicarpellate and unilocular. The ovule is unitegmic and tenuinucellar. The formation of the embryo sac is of the Polygonum Type. Before fertilization, the two polar nuclei fuse into a secondary nucleus. Fertilization is porogamous. The development of the endosperm is of the Nuclear Type. However, the two species show variation in the following features: the number of cell layers which form the anther locule wall; construction of the wall of the mature anther; cell number in mature pollen grains; ovule number in cross sections of placentae; degree of ovule curvature; character of the hypostase and seed shape. In a comparison with the other taxa in the tribe Gentianeae using embryological features, Megacodon is referred to as an independent genus and should be treated as a member of the subtribe Swertiinae; Veratrilla is better separated from Swertia s . l . as an independent genus. Veratrilla is more derived than Swertia s . s. and shows a close relationship with S. tetraptera . © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 317–331.  相似文献   

2.
The embryological features of three species of Swertia ( s.l.) – S. erythrosticta , S. franchetiana , and S. tetraptera – were characterized, and the observations were used, together with previously gathered data on other species, to evaluate a recently proposed polyphyly, based on molecular data, of Swertia s.l. Comparisons of species within the genus showed that they have diversified embryologically, and there are significant between-species differences. Notable features that vary between species include the number of cell layers that form the anther locule wall, the construction of the wall of the mature anther, tapetum origin, the cell number in mature pollen grains, the structure of the fused margins of the two carpels, the ovule numbers in placental cross-sections, the shape of the mature embryo sac, the degree of ovule curvature, antipodal variation and the presence of a hypostase, and seed appendages. They share characters that are widely distributed in the tribe Gentianeae, such as a dicotyledonous type of anther wall formation, a glandular tapetum with uninucleate cells, simultaneous cytokinesis following the meiosis of the microsporocytes, tetrahedral microspore tetrads, superior, bicarpellary and unilocular ovaries, unitegmic and tenuinucellar ovules, Polygonum -type megagametophytes, progamous fertilization, nuclear endosperm, and Solanad-type embryogeny. The presence of variation in embryological characters amongst the species of Swertia s.l. strongly supports the view that Swertia s.l. is not a monophyletic group. Frasera is better separated from Swertia s.l. as an independent genus, and is only distantly related to Swertia s.s. judging from the numerous differences in embryology. Swertia tetraptera is very closely related to Halenia , as they show identical embryology.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 383–400.  相似文献   

3.
Flowers, microsporogenesis and microgametogenesis of Excentrodendron hsienmu in opening-functional flowers and non-opening flowers were studied to investigate the evolutionary relationships of Excentrodendron . E. hsienmu is a dioecious species that blossoms every 3–4 years, although large numbers of flower buds develop every year. The anther is tetrasporangiate, the tapetum is of the secretory type, the microspore tetrads are mainly tetrahedral, and the pollen grains are two-celled when shed. Four to six microsporocytes are seen on the transverse section of the anthers, and cytokinesis is simultaneous. The development of the anther wall conforms to the basic type and the anther wall is five or six cells thick, with a fibrous endothecium. The difference between the opening-functional and the non-opening flowers is mainly in the thickness of the anther wall. Early megasporogenesis in staminate flowers up to megaspore mother cell or megaspore tetrads has been observed. Excentrodendron shares with Dombeyeae only plesiomorphic features, but differs in anther wall development type and thickness. Most features of Excentrodendron are shared with Pterospermum , including such synapomorphic features as basic type of anther wall development, five- to six-cell-thick anther wall, biseriate tapetum at some places, and degeneration of microsporocytes, suggesting placement near Pterospermum .   © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 447–457.  相似文献   

4.
Lauraceae are relatively well-known embryologically and embryological data are available for 23 of about 50 genera. In this paper we present the embryology of Eusideroxylon , an unstudied and key genus within Cryptocaryeae, which are positioned basally in the evolution of Lauraceae, and discuss the evolution of embryological characters in the family. Based on comparisons of over 50 characters, it was found that Eusideroxylon is consistent with Aspidostemon , the core Cryptocaryeae ( Beilschmiedia , Cryptocarya , Endiandra and Potameia ), Caryodaphnopsis and Cassytha in having a glandular anther tapetum. The core Cryptocaryeae further agrees with both Caryodaphnopsis and Cassytha in having an embryo sac protruding from the nucellus. In light of the phylogenetic trees available, both the glandular tapetum and the embryo sac protruding from the nucellus have evolved as homoplasies in Lauraceae, once each in a clade of Cryptocaryeae, and the Caryodaphnopsis and Cassytha clade, respectively. Such character-state distributions suggest that it is better to place both Caryodapnopsis and Cassytha in the same clade as the core Cryptocaryeae. Embryologically, Eusideroxylon appears to have an intermediate state between Hypodaphnis , a genus positioned basal-most in the family, and the core Cryptocaryeae. Supplementary data on the anther and seed of Hypodaphnis are also provided.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 187–201.  相似文献   

5.
Chrysobalanaceae s.l. , one of the few suprafamilial subclades of Malpighiales that is supported by molecular phylogenetic analyses, and containing Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, and Trigoniaceae, was comparatively studied with regard to floral structure. The subclade is well supported by floral structure. Potential synapomorphies for Chrysobalanaceae s.l. are the following shared features: floral cup; flowers obliquely monosymmetric; sepals congenitally united at base; sepals of unequal size (outer two shorter); fertile stamens concentrated on the anterior side of the flower and sometimes united into a strap; staminodes absent in the posteriormost antepetalous position; anthers extremely introrse, with thecae almost in one plane; endothecium continuous over the dorsal side of the connective; dorsal anther pit; gynoecium completely syncarpous up to the stigma; carpel flanks slightly bulged out transversely and thus carpels demarcated from each other by a longitudinal furrow; flowers with dense unicellular, non-lignified hairs, especially on the gynoecium; light-coloured, dense indumentum on young shoots and inflorescences. Potential synapomorphies for Chrysobalanaceae + Euphroniaceae include: spur in floral cup; clawed petals; lignified hairs on petals; nectary without lobes or scales and mostly annular. Potential synapomorphies for Dichapetalaceae + Trigoniaceae include: special mucilage cells in sepals in mesophyll (in addition to epidermis); anthers almost basifixed; gynoecium synascidiate up to lower style; nectary with lobes or scales and semi-annular.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 249–309.  相似文献   

6.
孔冬瑞  李璐 《植物研究》2017,37(2):181-184
利用光学显微技术和电镜扫描技术研究了琼榄的小孢子发生、雄配子体发育和花粉粒形态以增加广义心翼果科的胚胎学和孢粉学资料。主要结果如下:(1)花药四孢囊;(2)花药壁四层,从外到内分别为表皮、具纤维性加厚的药室内壁、退化早的中层和细胞具2~4核的分泌型绒毡层;(3)小孢子母细胞胞质分裂同时型,形成四面体型排列的小孢子四分体;(4)成熟花粉粒为二细胞型;(5)花粉粒具3个隐形萌发孔,外壁为网状纹饰。琼榄与心翼果属的小孢子发生和雄配子体发育特征非常相似,稍有不同。琼榄的花粉粒形态特征与同属其它种基本相同。  相似文献   

7.
十齿花属(Dipentodon)为东亚特有单型属,是国家二级保护植物,其系统位置长期有争议。本研究连续三年的野外观察结果表明十齿花(Dipentodon sinicus)的结籽率较低(4.31%)。同时利用常规石蜡制片技术,观察了十齿花的花药发育和雄配子体发育过程。十齿花的花药四室,花药壁发育类型为基本型。成熟花药壁有6层,由表皮,药室内壁,2层中层和2层绒毡层组成,绒毡层为腺质绒毡层。花药成熟时,纤维状加厚发生于药室内壁,便于花药开裂散粉。小孢子母细胞减数分裂的孢质分裂方式为同时型,小孢子四分体多为四面体型,稀左右对称型。成熟花粉粒为二细胞型,具3孔沟。在小孢子发育的减数分裂、小孢子四分体和二细胞型花粉时期,观察到发育不正常的现象,分别占40%、48%和36%。通过与其他亲缘类群的胚胎学特征比较,支持最新分子系统学把它独立成科,放在十齿花目的观点。雄配子体发育过程中,十齿花存在着花粉败育现象,这可能是导致其结实率低的原因之一。  相似文献   

8.
李璐  张梓袁  孔冬瑞  彭华 《植物研究》2017,37(4):508-513
首次报道了刚毛藤山柳(Clematoclethra scandens subsp.scandens)的花药和早期胚珠发育的胚胎学特征:花药4室;发育完整的花药壁6层,为基本型花药壁,由外至内分别为表皮、药室内壁、两层中层和两层绒毡层;腺质型绒毡层为2核或3核,纤维性加厚发生于药室内壁;小孢子母细胞减数分裂为同时型胞质分裂,小孢子四分体多为四面体型;成熟花粉粒为2-细胞型,3孔沟或稀4孔沟。早期胚珠为近倒生,单珠被,薄珠心,珠孔由单珠被构成。比较胚胎学研究认为藤山柳属和猕猴桃科的其它两个属都具有单珠被胚珠及其他相似的花药发育特征,这些特征和形态分类系统范畴的第伦桃科和山茶科有明显区别。因此,本文支持花粉形态学、细胞学和分子系统学的观点,认为藤山柳属与水东哥属和猕猴桃属构成一个较好的单系,一并放在猕猴桃科。  相似文献   

9.
采用常规石蜡切片技术,对江浙獐牙菜(Swertia hickinii Burk)花药壁形成、小孢子发生和雄配子体形成过程进行了研究。结果表明:(1)花药四室,花药壁由表皮、药室内壁、中层和绒毡层组成,药壁发育为双子叶型。绒毡层异型起源,腺质型。花粉成熟时药室内壁径向加长并纤维状加厚,表皮宿存。(2)小孢子母细胞在减数分裂过程中胞质分裂为同时型;小孢子四分体排列方式主要为四面体型,也有左右对称型和"T"型等其他类型;成熟花粉为3-细胞型,具三萌发沟。另外,对獐牙菜属的雄性胚胎学特征进行了全面总结,并与龙胆属、蔓龙胆属及双蝴蝶属进行比较归纳出其共性。研究认为,花药表皮宿存或退化,是獐牙菜属与双蝴蝶属的重要区别之一。  相似文献   

10.
艾静  李璐  王艳萍  郭辉军 《广西植物》2021,41(12):2014-2023
近年来的分子系统学把狭义萝藦科和狭义夹竹桃科合并为广义夹竹桃科,包括5个亚科和25个族,但亚科和族间的亲缘关系较为复杂,亟待多学科证据澄清。本文利用常规石蜡切片技术观察了马利筋亚科南山藤属中的中国特有植物苦绳(Dregea sinensis var. sinensis)的孢子发生和配子体发育,结合已有资料比较了5个亚科的胚胎学特征。结果表明:(1)苦绳的花药由一对侧生并列药室组成,各有一个花粉团。(2)花药壁有6层,由外至内分别为表皮、2层药室内壁、中层和2层绒毡层,花药壁发育模式属于多层型。(3)绒毡层细胞单核,排成2列,为腺质型; 在小孢子四分体形成时期,药室内壁发生明显纤维状加厚; 花药成熟时,位于药室远轴最外侧处的花药壁发生断裂,准备散粉。(4)小孢子母细胞减数分裂中,胞质分裂方式为连续型,小孢子四分体排列方式为左右对称; 成熟花粉粒为3-细胞型,排列紧密,形成花粉团。(5)雌蕊含有两枚离生心皮,具边缘胎座,胚珠倒生,单珠被,薄珠心,蓼型胚囊。本文观察到的这些胚胎学特征为牛奶菜族提供了新资料。同时,胚胎学特征在5个亚科间的区别和联系,支持广义夹竹桃科的成立。  相似文献   

11.
万代兰属的属间界限划定及其亲缘关系重建是兰科分类系统中的难解之谜。该研究采用常规石蜡切片技术观察了珍稀濒危植物大花万代兰的一对深裂花粉团的形成机制、花药壁发育模式、小孢子发生及雄配子体发育等的胚胎学特征。结果表明:(1)大花万代兰早期的花药原基分化出一对侧生药室,每个药室的小孢子囊中央分化出一条在花药成熟时会降解的不育隔膜组织,形成两个不等深裂的花粉团。(2)发育完整的花药壁有5~9层,包括2~6层药室内壁,符合多层型花药壁发育类型;绒毡层细胞为单核,腺质型,在花药成熟时,表皮、中层和绒毡层皆降解,仅留下2~6层纤维性加厚的药室内壁。(3)小孢子母细胞经过连续型胞质分裂形成正四面体和左右对称的小孢子四分体,小孢子四分体继续保持在同一个胼胝质内,完成有丝分裂形成了2 细胞型的四合花粉;四合花粉两两紧密排列,且由于隔膜组织的降解,最终发育为一对深裂的花粉团。根据现有兰花花药发育资料,分析了大花万代兰花粉团发育的胚胎学特征的分类学意义,为万代兰属错综复杂的系统分类提供了新资料。  相似文献   

12.
采用常规石蜡切片技术,对石蒜科葱兰的花药壁发育、大小孢子的发生和雌雄配子体的发生过程进行了研究,并对葱兰属、石蒜科、百合科以及葱科的胚胎学特征进行比较讨论。结果表明:(1)葱兰花药四室,药壁由表皮、药室内壁、中层和绒毡层组成;药壁发育类型为单子叶型,绒毡层的类型为分泌型;花粉成熟时药室内壁径向加长并纤维状加厚,表皮宿存;小孢子母细胞在减数分裂过程中胞质分裂为连续型,小孢子四分体排列方式主要为四面体型,还有少数一些为左右对称型,成熟花粉为2-细胞型。(2)葱兰的雌蕊3心皮合生,子房下位,中轴胎座,3室,每室具2列倒生胚珠;胚珠双珠被,厚珠心,具蓼型胚囊。(3)葱兰属的胚胎学特征与石蒜科的其他种类存在较大的差异,如葱兰属花药壁发育为单子叶型,而石蒜科花药壁发育主要为双子叶型,但葱兰属的这些胚胎学特征却和百合科较为相似。  相似文献   

13.
The mode of anther opening and the morphological and histological variability of the stomium are described in 30 Solanum species. Poricidal, poricidal‐longitudinally dehiscing and longitudinally dehiscing anthers are observed. In the three types, the stomium may be diverse with regard to shape and histological characteristics before opening, but is always composed of small epidermal cells as the sole anther wall layer; the stomial cells may be differentiated only in part of the anther length. Particular crescent‐shaped structures in the epidermis, called ‘ridges’, are observed to line the stomium in most species. These ridges may be related to the stomium opening, working together with the cells with thickened walls of the anther. Cells with thickened walls are developed in the endothecium, middle layers and/or connective tissue at the apical end of the anther, surrounding the pore; only in the longitudinally dehiscing anthers of S. nitidum does an endothecium with thickened cell walls develop along its entire length. At least two histological features (the differentiation of small stomial epidermal cells as a unique layer, and the distribution of cells with thickened walls) seem to constrain the form of the open stomium. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 344–354.  相似文献   

14.
首次报道了湖北双蝴蝶小孢子发生和雄配子体发育。主要结果如下:花药四室;药壁发育为双子叶型;绒毡层异型起源,属腺质型绒毡层,药隔处的绒毡层细胞形成类胎座,其余部位的绒毡层细胞仍为一层细胞;花药成熟时,药室内壁纤维状加厚且柱状伸长,表皮细胞减缩退化,纤维状加厚不明显。小孢子母细胞减数分裂为同时型,四分体排列方式主要为四面体形,少数为十字交叉形;成熟花粉多为2-细胞型,偶见3-细胞型,具三萌发孔。  相似文献   

15.
Quantitative and qualitative data are presented for woods of 30 species of woody Polygonaceae. Wood features that ally Polygonaceae with Plumbaginaceae include nonbordered perforation plates, storeying in narrow vessels and axial parenchyma, septate or nucleate fibres, vasicentric parenchyma, pith bundles that undergo secondary growth, silica bodies, and ability to form successive cambia. These features are consistent with pairing of Plumbaginaceae and Polygonaceae as sister families. Wood features that ally Polygonaceae with Rhabdodendraceae include nonbordered perforation plates, presence of vestured pits in vessels, presence of silica bodies and dark-staining compounds in ray cells, and ability to form successive cambia. Of the features listed above, nonbordered perforation plates and ability to form successive cambia may be symplesiomorphies basic to Caryophyllales sensu lato . The other features are more likely to be synapomorphies. Wood data thus support molecular cladograms that show the three families near the base of Caryophyllales s.l. Chambered crystals are common to three genera of the family and may indicate relationship. Ray histology suggests secondary woodiness in Antigonon, Atraphaxis, Bilderdykia, Dedeckera, Eriogonum, Harfordia, Muehlenbeckia, Polygonum , and Rumex . Other genera of the family show little or no evidence of secondary woodiness. Molecular data are needed to confirm this interpretation and to clarify the controversial systematic groupings within the family proposed by various authors. Vessel features of Polygonaceae (lumen diameter, element length, density, degree of grouping) show an extraordinary range from xeromorphy to mesomorphy, indicating that wood has played a key role in ecological and habital shifts within the family; the diversity in ecology and habit are correlated with quantitative wood data.  © 2003 The Linnean Society of London. Botanical Journal of the Linnean Society , 2003, 141 , 25−51.  相似文献   

16.
七叶树小孢子发生及雄配子体发育研究   总被引:1,自引:0,他引:1  
用石蜡切片法观察了七叶树花药的发育过程.结果表明:(1)雄蕊花药四室,花药壁完全分化时,从外到内依次是表皮、药室内壁、中层和绒毡层,花药壁发育为基本型.表皮细胞1层,发育过程中始终存在;药室内壁在花药成熟时形成带状纤维层加厚;幼小花药壁的中层3~4层细胞,在花药发育成熟时退化消失;绒毡层1层细胞,发育类型为分泌型,小孢子母细胞减数分裂时绒毡层开始退化解体,花药成熟完全消失,仅剩1层绒毡层膜.每一花药中有多列雄性孢原细胞,发生于幼小花药表皮下方;(2)小孢子母细胞减数分裂为同时型,四分体多呈正四面体排列;减数分裂过程中,小孢子母细胞外方被胼胝质壁所包被,小孢子形成后胼胝质壁逐渐消失.成熟花粉二细胞型,外形呈圆三角状,具三孔沟.  相似文献   

17.
敖成齐 《广西植物》2007,27(6):836-839
含笑的花药具4个小孢子囊,花药壁由表皮、药室内壁、3~6层中层和绒毡层组成。绒毡层细胞在发育后期由单核分裂为2核,原位解体,为腺质型;小孢子母细胞在减数分裂过程中胞质分裂为同时型,小孢子四分体为四面体型,也有左右对称型的;成熟花粉为3细胞型。在前人对含笑小孢子发生和雄配子体发育的观察描述基础上,丰富了含笑的胚胎学资料,并对其系统学意义进行了探讨。  相似文献   

18.
Embryological characters can be used to address taxonomic relationships and complement molecular phylogenetics and are of special value at the genus level. However, embryological information is fragmentary in Smilax and completely unknown in Smilax davidiana, a Chinese species. Anther wall development, placentation, sporogenesis and gametogenesis of S. davidiana are characterized here. The anther is bisporangiate, anther wall formation is of the Dicotyledonous type, both epidermis and endothecium develop fibrous thickenings, and the tapetum is secretory and of dual origin. Cytokinesis in the microsporocyte meiosis is successive, the microspore tetrad is tetragonal, and mature pollen is two-celled. The ovary is mostly trilocular with an axile placentation (a small fraction of the ovaries are unilocular with parietal placentation), the ovule is anatropous, bitegmic and crassinucellate, with embryo sac development of the Polygonum type. This study documents for the first time the embryological characters of S. davidiana in detail and contributes much to the embryology of Smilax.  相似文献   

19.
Sporogenesis, gametogenesis, fertilization and embryogenesis of Iris mandshurica Maxim. were observed using the normal paraffin method. The results are as follows: the development of the anther wall following the dicotyledonous type consisting of four layers, the epidermis, the endothecium, one middle layer and the secretory tapetum. Fibrous thickenings develop in the endothecium when the anther is shed. Simultaneous cytokinesis during microsporogenesis results in a tetrahedral tetrad of microspores. Mature pollen grains are two-celled. The ovary is inferior and trilocular with axial placenta. The ovule is anatropous, bitegminous and crassinucellate. The archesporial cell below the nucellar epidermis undergoes periclinal division producing the primary parietal cell and the primary sporogenous cell. The primary parietal cell participates in the nucellar formation; the primary sporogenous cell differentiates directly as the megasporocyte. Successive cytokinesis in the megasporocyte usually produces the linear tetrad, and the chalazal megaspore of the tetrad develops into a Polygonum-type embryo sac. The fertilization mode is porogamy. The pollen tube enters into the embryo sac and discharges two sperm 16?C20?h after pollination. The fertilization is the postmitotic type of syngamy. The first division of the zygote is transversal. Endosperm formation is of the nuclear type. The systematic significance of the embryological characters of I. mandshurica is discussed.  相似文献   

20.
对垂花悬铃花雄配子体发育观察表明,其花药由表皮(1层)、药室内层(1层)、中层(2层)、绒毡层(1层)及造孢细胞组成,花药四室,药壁发育为双子叶型。雄配子体发育经由花粉母细胞减数分裂形成四分体,该四分体胞质分裂为同时型,四分体排列方式为四面体型,十字交叉型及左右对称型;小孢子再经有丝分裂形成营养核和生殖核,生殖核再经有丝分裂形成3-核花粉。花药壁层的变化,在单核小孢子期,表皮细胞解体,仅留下痕迹;中层在花粉母细胞期逐渐消失;药室内壁在单核小孢子期开始纤维化;绒毡层在单核小孢子期消失,属变形绒毡层。雌配子体发育观察表明,其子房上位,5室,每室1个胚珠,胚珠弯生,中轴胎座,大多数胚珠发育停留在珠心形成阶段,极少数珠心形成一群孢原细胞及单核、双核胚囊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号