共查询到20条相似文献,搜索用时 0 毫秒
1.
Bai GR Yang LH Huang XY Sun FZ 《Biochemical and biophysical research communications》2006,348(4):1319-1327
Type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is a widely expressed intracellular calcium-release channel found in many cell types. The operation of IP(3)R1 is regulated through phosphorylation by multiple protein kinases. Extracellular signal-regulated kinase (ERK) has been found involved in calcium signaling in distinct cell types, but the underlying mechanisms remain unclear. Here, we present evidence that ERK1/2 and IP(3)R1 bind together through an ERK binding motif in mouse cerebellum in vivo as well as in vitro. ERK-phosphorylating serines (Ser 436) was identified in mouse IP(3)R1 and Ser 436 phosphorylation had a suppressive effect on IP(3) binding to the recombinant N-terminal 604-amino acid residues (N604). Moreover, phosphorylation of Ser 436 in R(224-604) evidently enhance its interaction with the N-terminal "suppressor" region (N223). At last, our data showed that Ser 436 phosphorylation in IP(3)R1 decreased Ca(2+) releasing through IP(3)R1 channels. 相似文献
2.
Platelet glycoprotein Ib beta is phosphorylated on serine 166 by cyclic AMP-dependent protein kinase 总被引:6,自引:0,他引:6
M R Wardell C C Reynolds M C Berndt R W Wallace J E Fox 《The Journal of biological chemistry》1989,264(26):15656-15661
Platelet responses are inhibited by agents such as prostaglandin E1 that increase the cytoplasmic concentration of cyclic AMP. Inhibition is thought to result from phosphorylation of specific proteins. One protein that becomes phosphorylated is glycoprotein (GP) Ib beta, a component of the GP Ib.IX complex. We have suggested that phosphorylation of GP Ib beta inhibits the collagen-induced polymerization of actin. The aim of the present study was to identify the amino acid(s) in GP Ib beta that is phosphorylated. Purified GP Ib.IX complex was phosphorylated by the catalytic subunit of purified bovine cyclic AMP-dependent protein kinase in the presence of [gamma-32P]ATP. Phosphoamino acid analysis showed that in GP Ib beta, [32P]phosphate was incorporated only into serine and was in a single tryptic peptide. Amino acid sequencing showed that this peptide was from the cytoplasmic domain of GP Ib beta and encompassed residues 161-175. A single serine residue, serine 166, contained the radiolabel. To determine whether the same residue was phosphorylated in intact platelets, GP Ib beta was isolated from 32P-labeled platelets before or after their exposure to prostaglandin E1. In both cases, radiolabel was present in phosphoserine and was in a single tryptic peptide. This peptide was the same as that which was phosphorylated in the purified GP Ib.IX complex, as shown by its identical mobility on two-dimensional tryptic maps, the presence of a positively charged residue in the fourth position, and the presence of the radiolabel in the sixth position of the peptide. This study shows that when cyclic AMP concentrations rise in platelets, the cytoplasmic domain of GP Ib beta is phosphorylated on serine 166, probably by cyclic AMP-dependent protein kinase. We suggest that phosphorylation of this residue may contribute to the inhibitory actions of cyclic AMP by inhibiting collagen-induced polymerization of actin. 相似文献
3.
D T Dransfield A J Bradford J Smith M Martin C Roy P H Mangeat J R Goldenring 《The EMBO journal》1997,16(1):35-43
cAMP-dependent protein kinase (A-kinase) anchoring proteins (AKAPs) are responsible for the subcellular sequestration of the type II A-kinase. Previously, we identified a 78 kDa AKAP which was enriched in gastric parietal cells. We have now purified the 78 kDa AKAP to homogeneity from gastric fundic mucosal supernates using type II A-kinase regulatory subunit (RII) affinity chromatography. The purified 78 kDa AKAP was recognized by monoclonal antibodies against ezrin, the canalicular actin-associated protein. Recombinant ezrin produced in either Sf9 cells or bacteria also bound RII. Recombinant radixin and moesin, ezrin-related proteins, also bound RII in blot overlay. Analysis of recombinant truncations of ezrin mapped the RII binding site to a region between amino acids 373 and 439. This region contained a 14-amino-acid amphipathic alpha-helical putative RII binding region. A synthetic peptide containing the amphipathic helical region (ezrin409-438) blocked RII binding to ezrin, but a peptide with a leucine to proline substitution at amino acid 421 failed to inhibit RII binding. In mouse fundic mucosa, RII immunoreactivity redistributed from a predominantly cytosolic location in resting parietal cells, to a canalicular pattern in mucosa from animals stimulated with gastrin. These results demonstrate that ezrin is a major AKAP in gastric parietal cells and may function to tether type II A-kinase to a region near the secretory canaliculus. 相似文献
4.
Inositol 1,4,5-trisphosphate receptor movement is restricted by addition of elevated levels of O-linked sugar 总被引:1,自引:0,他引:1
The inositol 1,4,5-trisphosphate receptor (InsP3R) is a versatile, ubiquitous intracellular calcium channel. Traditionally, visualizing the InsP3R in live cells involves attaching a fluorescent marker to either terminal of the protein, but the termini themselves contain binding sites for accessory molecules and proteins. Using random transposition, constructs have been developed that express the type I InsP3R with green fluorescent protein (GFP) inserted at various points within its sequence. We have used two of these constructs, one in the ligand-binding domain, and another in the regulatory domain, to investigate InsP3R dynamics within the endoplasmic reticulum. We present evidence that endogenous calcium signaling is maintained when these constructs are expressed. In addition, by measuring the fluorescent recovery after photobleaching of a subcellular region, we demonstrate that treatment with 8mM N-acetylglucosamine (GlcNAc), known to lead to increased O-linked GlcNAcylation of proteins, leads to a reduction in the ability of the InsP3R to travel laterally within the endoplasmic reticulum. Each construct serves as the control for the other one, suggesting that this decrease in mobility is not specific to the insertion site of GFP within the InsP3R. These constructs represent a new tool that will allow us to follow receptor turnover and translocation events. 相似文献
5.
Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains
Sato C Hamada K Ogura T Miyazawa A Iwasaki K Hiroaki Y Tani K Terauchi A Fujiyoshi Y Mikoshiba K 《Journal of molecular biology》2004,336(1):155-164
Calcium concentrations are strictly regulated in all biological cells, and one of the key molecules responsible for this regulation is the inositol 1,4,5-trisphosphate receptor, which was known to form a homotetrameric Ca(2+) channel in the endoplasmic reticulum. The receptor is involved in neuronal transmission via Ca(2+) signaling and for many other functions that relate to morphological and physiological processes in living organisms. We analysed the three-dimensional structure of the ligand-free form of the receptor based on a single-particle technique using an originally developed electron microscope equipped with a helium-cooled specimen stage and an automatic particle picking system. We propose a model that explains the complex mechanism for the regulation of Ca(2+) release by co-agonists, Ca(2+), inositol 1,4,5-trisphosphate based on the structure of multiple internal cavities and a porous balloon-shaped cytoplasmic domain containing a prominent L-shaped density which was assigned by the X-ray structure of the inositol 1,4,5-trisphosphate binding domain. 相似文献
6.
Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. 总被引:16,自引:0,他引:16
下载免费PDF全文

N Filippa C L Sable C Filloux B Hemmings E Van Obberghen 《Molecular and cellular biology》1999,19(7):4989-5000
Activation of protein kinase B (PKB) by growth factors and hormones has been demonstrated to proceed via phosphatidylinositol 3-kinase (PI3-kinase). In this report, we show that PKB can also be activated by PKA (cyclic AMP [cAMP]-dependent protein kinase) through a PI3-kinase-independent pathway. Although this activation required phosphorylation of PKB, PKB is not likely to be a physiological substrate of PKA since a mutation in the sole PKA consensus phosphorylation site of PKB did not abolish PKA-induced activation of PKB. In addition, mechanistically, this activation was different from that of growth factors since it did not require phosphorylation of the S473 residue, which is essential for full PKB activation induced by insulin. These data were supported by the fact that mutation of residue S473 of PKB to alanine did not prevent it from being activated by forskolin. Moreover, phosphopeptide maps of overexpressed PKB from COS cells showed differences between insulin- and forskolin-stimulated cells that pointed to distinct activation mechanisms of PKB depending on whether insulin or cAMP was used. We looked at events downstream of PKB and found that PKA activation of PKB led to the phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) activity, a known in vivo substrate of PKB. Overexpression of a dominant negative PKB led to the loss of inhibition of GSK-3 in both insulin- and forskolin-treated cells, demonstrating that PKB was responsible for this inhibition in both cases. Finally, we show by confocal microscopy that forskolin, similar to insulin, was able to induce translocation of PKB to the plasma membrane. This process was inhibited by high concentrations of wortmannin (300 nM), suggesting that forskolin-induced PKB movement may require phospholipids, which are probably not generated by class I or class III PI3-kinase. However, high concentrations of wortmannin did not abolish PKB activation, which demonstrates that translocation per se is not important for PKA-induced PKB activation. 相似文献
7.
Transmodulation of epidermal growth factor receptor function by cyclic AMP-dependent protein kinase.
A J Barbier H M Poppleton Y Yigzaw J B Mullenix G J Wiepz P J Bertics T B Patel 《The Journal of biological chemistry》1999,274(20):14067-14073
Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo. 相似文献
8.
Effect of cyclic AMP-dependent protein kinase on insulin receptor tyrosine kinase activity. 总被引:1,自引:1,他引:1
下载免费PDF全文

J F Tanti T Grémeaux N Rochet E Van Obberghen Y Le Marchand-Brustel 《The Biochemical journal》1987,245(1):19-26
To explain the insulin resistance induced by catecholamines, we studied the tyrosine kinase activity of insulin receptors in a state characterized by elevated noradrenaline concentrations in vivo, i.e. cold-acclimation. Insulin receptors were partially purified from brown adipose tissue of 3-week- or 48 h-cold-acclimated mice. Insulin-stimulated receptor autophosphorylation and tyrosine kinase activity of insulin receptors prepared from cold-acclimated mice were decreased. Since the effect of noradrenaline is mediated by cyclic AMP and cyclic AMP-dependent protein kinase, we tested the effect of the purified catalytic subunit of this enzyme on insulin receptors purified by wheat-germ agglutinin chromatography. The catalytic subunit had no effect on basal phosphorylation, but completely inhibited the insulin-stimulated receptor phosphorylation. Similarly, receptor kinase activity towards exogenous substrates such as histone or a tyrosine-containing copolymer was abolished. This inhibitory effect was observed with receptors prepared from brown adipose tissue, isolated hepatocytes and skeletal muscle. The same results were obtained on epidermal-growth-factor receptors. Further, the catalytic subunit exerted a comparable effect on the phosphorylation of highly purified insulin receptors. To explain this inhibition, we were able to rule out the following phenomena: a change in insulin binding, a change in the Km of the enzyme for ATP, activation of a phosphatase activity present in the insulin-receptor preparation, depletion of ATP, and phosphorylation of a serine residue of the receptor. These results suggest that the alteration in the insulin-receptor tyrosine kinase activity induced by cyclic AMP-dependent protein kinase could contribute to the insulin resistance produced by catecholamines. 相似文献
9.
10.
Primary structure of the site on bovine hormone-sensitive lipase phosphorylated by cyclic AMP-dependent protein kinase 总被引:6,自引:0,他引:6
The primary structure of a region on hormone-sensitive lipase was determined to be: Lys-Thr-Glu-Pro-Met-Arg-Arg-Ser- Val-Ser-Glu-Ala-Ala-Leu-Thr-Gln-Pro-Glu-Gly-Pro-Leu-Gly-Thr-Asp-Ser-Leu-Lys. Ser-8 was the only residue in the intact protein phosphorylated by cyclic AMP-dependent protein kinase. However, Ser-10 also appeared to be present in a phosphorylated form, suggesting that it is a target for a distinct protein kinase in vivo. 相似文献
11.
Vermassen E Fissore RA Nadif Kasri N Vanderheyden V Callewaert G Missiaen L Parys JB De Smedt H 《Biochemical and biophysical research communications》2004,319(3):888-893
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献
12.
Guo Z Tang W Yuan J Chen X Wan B Gu X Luo K Wang Y Yu L 《Biochemical and biophysical research communications》2006,347(4):867-871
Brain selective kinase 2 (BRSK2) has been identified as a member of AMPK related kinases. LKB1 can phosphorylate the Thr174 of BRSK2, increasing its activity >50-fold. In this study, we identified cAMP-dependent protein kinase A (PKA) as another upstream kinase of BRSK2, which can phosphorylate BRSK2 at Thr260. The association between these two proteins was confirmed by GST pull-down. Furthermore, our study indicated that the kinase activity of BRSK2 can be increased through phosphorylation by PKA. 相似文献
13.
In the present study we investigated the modulation of hypothalamic NMDA receptor-mediated currents by cyclic AMP-dependent protein kinase (PKA) using the two-electrode voltage-clamp technique in XENOPUS: oocytes injected with rat hypothalamic mRNA. Application of forskolin, which activates PKA by means of cyclic AMP stimulation, caused a transient increase of NMDA-induced currents, whereas the inactive forskolin analogue 1,9-dideoxyforskolin had no effect. Incubation of oocytes with a membrane-permeable analogue of cyclic AMP, 8-bromoadenosine 3',5' -cyclic monophosphate, potentiated NMDA responses even more prominently than with forskolin. NMDA-induced currents recorded from XENOPUS: oocytes injected with cRNA encoding the NMDA receptor subunits NR1, NR2A, and/or NR2B, mainly found in rat hypothalamus, were not affected by PKA activation but were increased by protein kinase C (PKC) stimulation. It is interesting that inhibition of endogenous protein phosphatase 1 and/or 2A by calyculin A resulted in a similar enhancement of hypothalamic NMDA-induced currents. Preinjection of oocytes with calyculin A impeded the PKA- but not the PKC-mediated potentiation of hypothalamic NMDA-induced currents. We propose the involvement of an additional third messenger in the PKA effect, which acts most likely via the inhibition of tonically active protein phosphatase 1 and/or 2A. 相似文献
14.
Taurin S Sandbo N Qin Y Browning D Dulin NO 《The Journal of biological chemistry》2006,281(15):9971-9976
15.
Anderson AE Adams JP Qian Y Cook RG Pfaffinger PJ Sweatt JD 《The Journal of biological chemistry》2000,275(8):5337-5346
Recent evidence suggests that K(+) channels composed of Kv4.2 alpha-subunits underlie a transient current in hippocampal CA1 neurons and ventricular myocytes, and activation of the cAMP second messenger cascade has been shown to modulate this transient current. We determined if Kv4.2 alpha-subunits were directly phosphorylated by cAMP-dependent protein kinase (PKA). The intracellular domains of the amino and carboxyl termini of Kv4.2 were expressed as glutathione S-transferase fusion protein constructs; we observed that both of these fusion proteins were substrates for PKA in vitro. By using phosphopeptide mapping and amino acid sequencing, we identified PKA phosphorylation sites on the amino- and carboxyl-terminal fusion proteins corresponding to Thr(38) and Ser(552), respectively, within the Kv4.2 sequence. Kinetic characterization of the PKA sites demonstrated phosphorylation kinetics comparable to Kemptide. To evaluate PKA site phosphorylation in situ, phospho-selective antisera for each of the sites were generated. By using COS-7 cells expressing an EGFP-Kv4.2 fusion protein, we observed that stimulation of the endogenous PKA cascade resulted in an increase in phosphorylation of Thr(38) and Ser(552) within Kv4.2 in the intact cell. We also observed modulation of PKA phosphorylation at these sites within Kv4.2 in hippocampal area CA1. These results provide insight into likely sites of regulation of Kv4.2 by PKA. 相似文献
16.
Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C 总被引:6,自引:0,他引:6
The Ca2(+)-mobilizing second messenger D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is converted to the putative messenger D-myo-inositol 1,3,4,5-tetrakisphosphate by Ins(1,4,5)P3 3-kinase. We found that cAMP-dependent protein kinase and protein kinase C phosphorylate, and thereby modulate, the activity of Ins(1,4,5)P3 3-kinase. cAMP-dependent kinase introduced a stoichiometric amount of phosphate at serine 109 of the 53-kDa polypeptide and caused a 1.8-fold increase in Vmax, whereas the protein kinase C-dependent phosphorylation reduced the Vmax to one-fourth of that of the unphosphorylated enzyme. Upon prolonged incubation, protein kinase C introduced phosphate at multiple sites in Ins(1,4,5)P3 3-kinase, and the resulting inactivation of the enzyme appeared to be well-correlated with the simultaneous phosphorylation of two major sites, serine 109 and serine 175. The Km for Ins(1,4,5)P3 was not affected significantly after phosphorylation by either protein kinase. We propose, therefore, that the phosphorylation of Ins(1,4,5)P3 3-kinase by cAMP-dependent kinase and protein kinase C constitutes mechanisms of cross-talk between cellular signaling pathways that use various second messengers such as inositol phosphates, diacylglycerol, Ca2+, and cAMP. 相似文献
17.
Rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK), assayed using the synthetic peptide substrate, LRRASLG, is inhibited by a range of plant-derived flavonoids. In general, maximal inhibitory effectiveness (IC50 values 1 to 2 microM) requires 2,3-unsaturation and polyhydroxylation involving at least two of the three flavonoid rings. 3-Hydroxyflavone (IC50 value 4 microM), 3,5,7,2',4'-pentahydroxyflavone (IC50 = 10 microM) and 5,7,4'-trihydroxyflavone (IC50 = 7 microM) represent somewhat less active variations from this pattern. Flavonoid O-methylation or O-glycosylation greatly decreases inhibitory effectiveness, as does 2,3-saturation. Various flavonoid-related compounds, notably gossypol (IC50 = 10 microM), also inhibit cAK. Flavonoids and related compounds are in general much better inhibitors of cAK than of avian Ca(2+)-calmodulin-dependent myosin light chain kinase or of plant Ca(2+)-dependent protein kinase. Tricetin (IC50 = 1 microM) inhibits cAK in a fashion that is non-competitive with respect to both peptide substrate and ATP (Ki value 0.7 microM). When histone III-S is used as a substrate, inhibition of cAK requires much higher flavonoid concentrations. 相似文献
18.
Bovine thyroid cyclic AMP-dependent protein kinase was purified by DEAE-Sephadex and Sephadex G-200 chromatography. This preparation showed a 240-fold increase in specific activity over the initial 20,000 x g supernatant with histone as substrate and 1 micronM cyclic AMP in the assay mixture. In the presence of 2.5 X 10(-5)M L-triiodothyronine (T3), protein kinase activity was significantly reduced; 50% inhibition was achieved at 1 X 10(-4) M. Tests of diverse thyroid hormone analogs showed that T3 and its derivatives were more potent inhibitors than T4 and its derivatives which, in turn, were more potent than thyronine or diiodothyronine. Mono- and diiodotyrosine, tyrosine, and iodide were without effect. Triiodothyronine did not inhibit kidney, spleen, or lung protein kinase activity. The magnitude of the inhibition was the same whether or not cyclic AMP (1 micronM) was present in the incubation mixture, suggesting an effect on the catalytic, rather than the regulatory subunit of the enzyme. The inhibition of protein kinase by thyroid hormone was not influenced by Mg++ concentration but was overcome in a competitive manner by increasing ATP concentration. Increasing the histone concentration did not modify the inhibition. Although these studies suggest a novel cellular control mechanism, the high thyroid hormone concentrations required and the lack of concordance between inhibitory effects and biologic activity of the analogs tested precludes assumption of physiologic relevance. 相似文献
19.
20.
The phosphorylation of purified phospholamban by cyclic AMP-dependent protein kinase is stimulated by phosphatidylinositol 总被引:2,自引:0,他引:2
A pure bovine phospholamban sample was phosphorylated by cyclic AMP-dependent protein kinase maximally to about 1 mol of phosphate/mol of protein (Mr 25,000), whereas phospholamban purified from bovine cardiac SR (sarcoplasmic reticulum) vesicle prephosphorylated by the protein kinase was found to contain 4.6 mol of phosphate/mol of phospholamban. The decrease in phospholamban phosphorylation occurred during the protein purification at the immunoaffinity chromatography step. The protein phosphorylation could be restored by the addition of the affinity column flow-through fraction to the phosphorylation reaction. The phosphorylation-stimulating activity of the flow-through fraction was resistant to boiling and trypsin treatment and extractable by organic solvent, suggesting that the endogenous factor(s) is lipid. Various phospholipids were found capable of stimulating the phosphorylation of phospholamban by cyclic AMP-dependent protein kinase, but only phosphatidylinositol could stimulate the protein phosphorylation to a level achieved by the phosphorylation of SR membrane-bound phospholamban, about 5 mol of phosphate/mol. Phospholamban phosphorylated in the presence of phosphatidylinositol showed similar sites of phosphorylation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility shifts as the phospholamban isolated from phosphorylated SR vesicles. Results of the present study suggest that phospholamban in SR is embedded in a phosphatidylinositol-rich microenvironment, and that this specific environment may be important for the regulation of Ca2+ pump by phospholamban. 相似文献