首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
冬季土壤呼吸是生态系统释放CO2的极为重要的组成部分,并显著地影响着碳收支。然而,过去绝大多数工作集中在生长季节土壤呼吸的测定,对年土壤呼吸量的估算大多基于冬季土壤呼吸为零的假设。目前为数不多的研究集中在极地苔原和亚高山,其它植被类型的研究只有零星报道。极地苔原和森林冬季土壤呼吸速率分别为0.002~1.359和0.22~0.67 μmol C.m-2·s-1;土壤呼吸的CO2释放量分别为0.55~26.37和22.4~152.0 g C·m-2,是地气CO2交换过程中不可忽视的环节。雪是土壤呼吸过程的重要调节者,积雪厚度和覆盖时间的长短均会影响土壤呼吸的强弱;水分的可获取性是重要的限制因素;对于维持活跃的土壤呼吸有一个关键的土壤温度临界值(-7~-5 ℃),低于这个值会因自由水的缺乏而抑制异养微生物的呼吸。如果存在绝缘的积雪层,可溶性碳底物在自由水存在的情况下可控制异养微生物的活力。该文对冬季土壤呼吸的重要性、研究方法、土壤呼吸强度及其影响机制等进行了综述,并讨论了冬季土壤呼吸研究中存在的问题及未来研究方向。  相似文献   

2.
对玉米季、小麦季3种不同秸秆还田量的土壤生物学指标的测定结果表明,在秸秆倍量还田中,随着秸秆量的增加,CO2释放量增加,而且倍量处理的增加量显著大于全量处理;在玉米和小麦季节中,不同量秸秆还田对土壤0~10和10~20cm的土壤微生物量的影响不同,但均能增大土壤微生物量,全量和倍量处理间没有明显差异.在土壤表层及下层,微生物量的最大值均落后于土壤呼吸的最大值,且土壤微生物量达到最大值即其最活跃状态后,下降缓慢,但土壤呼吸减少较快,说明微生物活动存在明显的合成性呼吸与维持性呼吸;综合评价不同秸秆量还田的效应,应采用秸秆全量还田,既能调节土壤物理环境,促进微生物的代谢活动,利于养分的转化,又可以减少环境污染.  相似文献   

3.
三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放   总被引:1,自引:0,他引:1  
利用静态箱-碱液吸收法研究了三江平原草甸湿地土壤呼吸和枯落物分解的CO2释放速率,讨论了影响CO2释放的环境因素,估算了枯落物分解的CO2释放对于总释放的贡献。结果表明,生长季,小叶章沼泽化草甸和小叶章湿草甸各部分CO2释放均具有明显的时间变化特征,温度和水分是重要制约因素。两类草甸湿地的平均土壤呼吸速率分别为4.33g•m-2•d-1和6.15g•m-2•d-1,枯落物分解的CO2平均释放速率分别为1.76g•m-2•d-1和3.10g•m-2•d-1,枯落物分解的CO2释放占总释放量的31%和35%,说明在碳素由地上植物碳库转移到地下土壤碳库的过程中,湿地枯落物是一个不可忽略的碳损失源。  相似文献   

4.
CO2浓度升高对红松和长白松土壤呼吸作用的影响   总被引:6,自引:0,他引:6  
以开顶箱法研究了CO2浓度升高对红松和长白松土壤呼吸作用的影响.结果表明,500 μmol CO2·mol-1使红松和长白松土壤呼吸速率明显降低,土壤表面CO2浓度升高导致CO2扩散受阻可能是土壤呼吸受到抑制的主要原因.500 μmol CO2·mol-1下两树种土壤表面CO2浓度明显高于对照箱和裸地条件下的CO2浓度,增加幅度在40~150 μmol·mol-1之间;对照箱内长白松土壤表面CO2浓度略高于裸地,差异不显著,红松差异显著500 μmol CO2·mol-1下的长白松土壤全氮及总有机碳含量略高于对照组,差异不显著,红松裸地的碳氮含量明显低于500 μmol CO2·mol-1 及对照箱内土壤碳氮含量;500 μmol CO2·mol-1 及开顶箱的微环境对地下3 cm处土壤温度没有明显影响.  相似文献   

5.
森林生态系统土壤CO2释放随海拔梯度的变化及其影响因子   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环的关注。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,成为了各国生态学家研究的重点内容。通过对1800~2155m海拔梯度上森林生态系统土壤CO2释放进行研究,揭示了较小空间尺度上土壤CO2释放的变化规律及其控制机制。在研究区域内,随着海拔梯度的增加,森林土壤CO2释放由(1.94±006) μmol m-2 s-1逐渐增加至(2.22±0.07) μ mol m-2 s-1。土壤温度、土壤水分、土壤有机碳(SOC)、全N、全P与土壤CO2释放呈显著正相关(n=14, P<0.05);土壤容重与土壤CO2释放速率呈显著负相关(n=14,P<0.05);土壤pH对土壤CO2释放影响不显著。作为一个复杂的生态学过程,环境因子及其交互作用对土壤CO2释放产生影响,为了减少因子共线性影响,逐步降低因子维数,采用主成分分析(PCA)揭示了土壤温度、土壤水分、SOC、全N、全P、容重6个因子的联合作用,其累积贡献率达到了57%以上;进一步运用逐步回归分析方法,探讨了影响土壤CO2释放沿海拔梯度分布的主导因子,结果表明土壤水分是研究区域森林生态系统土壤CO2释放沿海拔梯度变化的主导因子。  相似文献   

6.
采用静态室/碱吸收法研究了内蒙古大针茅典型草原土壤呼吸的时空动态.大针茅群落地上部和地下部生物量的时空变异不同步,用地上部生物量不能很好地预测群落的根系量.群落土壤呼吸具有明显的时空动态,控制群落土壤呼吸空间变异与时间变异的因子是不同的.土壤呼吸的季节变化与地上部生物量及土壤水分状况关系密切.根据大针茅群落分别计算了大针茅群落1995、1997和1998年的年CO2排放总量,分别为180、45.8和225gC·m-2·a-1,年际变异很大.过度放牧大大降低了群落的生物量,也降低了土壤CO2排放量.讨论了建立以降水量为驱动因子的草地群落土壤呼吸动态模型的可能性.  相似文献   

7.
 根呼吸与微生物呼吸的作用底物不同,二者对高浓度CO2的响应机理及敏感程度亦不同。在大气CO2浓度升高的背景下,精确区分根呼吸与微生物呼吸是构建森林生态系统碳循环模型和预测森林生态系统碳源/汇关系所必需的。根(际)呼吸与微生物呼吸对高浓度CO2的响应呈增加、降低或无明显变化等不同趋势,根(际)呼吸变化主要与根生物量明显相关,细根的作用大于粗根;土壤微生物呼吸变化存在较大的不确定性,微生物量和微生物活性与土壤微生物呼吸相关或不相关。根系统对高浓度CO2的响应会潜在地影响微生物的代谢底物,进而影响微生物呼吸强度。凡影响土壤总呼吸的生物与非生物因子都会直接或间接地影响根呼吸与土壤微生物呼吸。  相似文献   

8.
中国森林生态系统土壤CO2释放分布规律及其影响因素   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环变化的关注。陆地生态系统在全球变暖格局下的地位与作用,尤其是土壤碳库对全球变暖格局的响应是全球变化研究的焦点。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,也就成为各国生态学家研究的重点内容。在对我国森林生态系统CO2释放通量以及相关气候、生物等因子的资料进行收集、整理和分析的基础上,探讨了我国森林生态系统土壤CO2释放的分布规律,以及这种规律性分布的气候、生物影响因素。对于我国这样一个南北跨度大的国家,不同区域的森林生态系统土壤CO2释放通量间存在较大的差异,在全国尺度上,森林生态系统土壤CO2释放通量平均值为(1.79 ± 0.86) g C m-2 d-1,而且土壤CO2释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤CO2释放受到生物、非生物因子或独立、或综合的影响。通过分析指出,在全国尺度上,年均温、降雨量、群落净生产力及凋落物量显著地影响森林土壤CO2释放通量。同时,也正是这些影响因子的纬度分布,导致了我国森林生态系统土壤CO2释放通量的纬度分布规律。作为衡量土壤CO2释放对温度敏感性的重要指标,计算了我国森林生态系统土壤CO2释放温度敏感性系数-Q10值,约为1.5,该值显著低于全球平均水平,2.0。  相似文献   

9.
东北主要树种倒木分解释放的CO2通量   总被引:3,自引:0,他引:3  
孙秀云  王传宽 《生态学报》2007,27(12):5130-5137
在倒木丰富的森林生态系统中,倒木分解释放的CO2通量(RCWD)是生态系统碳收支中不容忽视的一个组分。采用红外气体分析法(Li-6400IRGA)测定东北东部山区典型温带天然次生林中11个主要树种的RCWD及其相关环境因子。主要研究目标包括:比较11个树种的RCWD、倒木温度(TCWD)和倒木含水量(WCWD);量化RCWD与TCWD和WCWD的关系;量化RCWD的季节动态。研究结果表明:白桦、山杨、紫椴、胡桃楸、蒙古栎、色木槭、春榆、红松、黄菠萝、落叶松和水曲柳在测定期间RCWD的平均值分别为:10.64、8.38、7.85、6.59、6.01、4.07、3.88、2.55、2.29、1.96μmolCO.2m-.2s-1和1.90μmolCO.2m-.2s-1。软阔叶树种的RCWD最高;针叶树种的RCWD总体上低于阔叶树种的。在整个测定期间,不同树种的TCWD虽然没有显著性差异(p>0.1),但是其WCWD差异极显著(p<0.001)。树种、倒木个体、倒木所处的立地状况及其交互作用均显著地影响RCWD,但其影响程度因树种而异。所有树种的TCWD、WCWD及其交互作用显著地(p<0.01)影响RCWD;包括了这些作用的RCWD模型解释了39.9%~72.9%的RCWD变异。不同树种RCWD的季节变化呈现基本一致的单峰曲线格局,主要受TCWD的驱动;而WCWD主要影响RCWD的季节内变化和树种间的差异。  相似文献   

10.
作为地下过程的土壤呼吸:我们理解了多少?   总被引:18,自引:0,他引:18       下载免费PDF全文
地下生态过程显著地影响着陆地生态系统的碳循环。植物光合作用固定的碳有35%~80%分配到地下(Ryan et al.,2004),10%以枯枝落叶的形式进入土壤(Raich&Nadelhoffer,1989);储存在枯枝落叶和土壤中的碳占生态系统碳储量的30%~90%(Dixon,1994)。因此,地下碳储量的变化对陆地生态系统的碳储存和碳释放起着关键作用。  相似文献   

11.
土壤呼吸作用时空动态变化及其影响机制研究与展望   总被引:12,自引:0,他引:12       下载免费PDF全文
测定不同陆地生态系统土壤呼吸速率及其时空波动, 阐明其影响因子, 对于全球碳素平衡预算和全球变化潜在效应估计是最为基本的数据。然而, 有关土壤呼吸作用变异性及其影响因素的知识仍存在局限性, 一些关键的过程和机制还有待阐明。该文综述了近年来土壤呼吸作用时空动态规律、影响机制和模拟方面的研究进展, 指出环境因子和生物因子共同驱动着土壤呼吸作用的时间动态变化; 土壤呼吸作用在不同时间尺度上还具有明显的空间异质性, 这主要是植被覆盖、根系分布、主要的环境因素和土壤特性空间分布的异质性造成的。生物因子是影响土壤呼吸作用时空动态变化的主要因素之一。然而, 目前所使用的土壤呼吸作用经验模型通常利用土壤温度、土壤湿度或者两者的交互作用模拟土壤呼吸作用动态变化, 但没有考虑生物因子的影响, 这可能会导致明显的偏差和错误。因此, 为了精确估算土壤呼吸作用, 必须解决土壤呼吸作用小尺度上的空间变异性; 加强不同时间尺度上生物要素对土壤呼吸作用动态变化的影响研究; 除了气候因子外, 土壤呼吸作用经验模型应该纳入生物因子等其它影响因素作为变量, 用以提高模型模拟的正确性和准确性。  相似文献   

12.
 由于受到多种生物和非生物因素的影响,土壤呼吸在不同时间尺度上的动态变化可能不一致。对不同时间尺度的土壤呼吸动态变化的研究有助 于深入了解土壤呼吸变化的机理,也有利于精确推算土壤碳的排放。采用红外CO2分析法测定哀牢山中山湿性常绿阔叶林季节间(2004年4月~ 2005年3月)和昼夜间 (2004年7、9和11月及2005年1、3和5月共6次)的土壤呼吸。哀牢山中山湿性常绿阔叶林中土壤呼吸的季节变化显著,其中 湿季(5~10月)的土壤呼吸高于干季(11月~翌年4月),全年土壤呼吸的平均值为0.442 g CO2&;#8226;m-2&;#8226;h-1。6 次测定的土壤呼吸日变化模式并不 相同,7和9月、翌年1和3月夜间土壤呼吸大于昼间土壤呼吸,11月和翌年5月则相反;5、7和9月昼夜间的土壤呼吸最大值与最小值的差异比11 月、翌年1和3月的测定结果大。季节间土壤呼吸与土壤温度(p=0.000)和土壤含水量(p=0. 007) 均有显著的指数相关,土壤温度可以解释土壤 呼吸变化的56.1%,土壤含水量可以解释土壤呼吸变化的11.1%。不同季节测定的土壤呼吸日变化与土壤温度、气温和土壤含水量则没有显著 的指数相关。由土壤呼吸与土壤温度拟合的指数方程计算Q10值,在温度为 5.9~16.6 ℃内,全年土壤呼吸的Q10值为4.53,在温度为5.9~ 11.0 ℃内,干季土壤呼吸的Q10值为7.17,在温度为10.3~16.6 ℃内,湿季土壤呼吸的Q10值为2.34。在不同时间尺度上,生物和非生物因素 对哀牢山中山湿性常绿阔叶林的土壤呼吸表现出不同的影响。土壤呼吸的季节变化主要受非生物因子温度和水分变化的调控,而土壤呼吸的昼 夜变化则可能主要受植物的生理活动周期性等生物因素的影响。通过温度的指数函数关系,用土壤呼吸的瞬时值来推算土壤呼吸的日通量和年 通量时,需要考虑温度和水分外的其它生物因子的影响。  相似文献   

13.
土壤水分与冬小麦根、冠功能均衡关系的模拟研究   总被引:20,自引:1,他引:19  
冯广龙  罗远培 《生态学报》1999,19(1):96-103
利用已建立并经充分验证过的根,冠系统模拟模型,研究了不同土壤水分条件下根、冠之间消长关系,给出了不同1m土体贮水量波动情况下根冠比动态变化模拟结果,并提供了有关试验数据作为佐证,其中有些结论为常规试验不易得到的全新认识,有些结果支持并证实了以往有关结论,均为水分对作物生长实施调控提供了重要依据。  相似文献   

14.
Management options for reducing CO2 emissions from agricultural soils   总被引:18,自引:0,他引:18  
Crop-based agriculture occupies 1.7 billion hectares, globally, with a soil C stock of about 170 Pg. Of the past anthropogenic CO2 additions to the atmosphere, about 50 Pg C came from the loss of soil organic matter (SOM) in cultivated soils. Improved management practices, however, can rebuild C stocks in agricultural soils and help mitigate CO2 emissions.Increasing soil C stocks requires increasing C inputs and/or reducing soil heterotrophic respiration. Management options that contribute to reduced soil respiration include reduced tillage practices (especially no-till) and increased cropping intensity. Physical disturbance associated with intensive soil tillage increases the turnover of soil aggregates and accelerates the decomposition of aggregate-associated SOM. No-till increases aggregate stability and promotes the formation of recalcitrant SOM fractions within stabilized micro- and macroaggregate structures. Experiments using13 C natural abundance show up to a two-fold increase in mean residence time of SOM under no-till vs intensive tillage. Greater cropping intensity, i.e., by reducing the frequency of bare fallow in crop rotations and increasing the use of perennial vegetation, can increase water and nutrient use efficiency by plants, thereby increasing C inputs to soil and reducing organic matter decomposition rates.Management and policies to sequester C in soils need to consider that: soils have a finite capacity to store C, gains in soil C can be reversed if proper management is not maintained, and fossil fuel inputs for different management practices need to be factored into a total agricultural CO2 balance.  相似文献   

15.
It has only recently become apparent that biological activity during winter in seasonally snow-covered ecosystems may exert a significant influence on biogeochemical cycling and ecosystem function. One-seventh of the global soil carbon pool is stored in the bulk soil component of arctic ecosystems. Consistent climate change predictions of substantial increases in winter air temperatures and snow depths for the Arctic indicate that this region may become a significant net annual source of CO2 to the atmosphere if its bulk soil carbon is decomposed. We used snow fences to investigate the influence of a moderate increase in snow depth from approximately 0.3 m (ambient) to approximately 1 m on winter carbon dioxide fluxes from mesic birch hummock tundra in northern Canada. We differentiated fluxes derived from the bulk soil and plant-associated carbon pools using an experimental ‘weeding’ manipulation. Increased snow depth enhanced the wintertime carbon flux from both pools, strongly suggesting that respiration from each was sensitive to warmer soil temperatures. Furthermore, deepened snow resulted in cooler and relatively stable soil temperatures during the spring-thaw period, as well as delayed and fewer freeze–thaw cycles. The snow fence treatment increased mean total winter efflux from 27 to 43 g CO2-C m−2. Because total 2004 growing season net ecosystem exchange for this site is estimated at 29–37 g CO2-C m−2, our results strongly suggest that a moderate increase in snow depth can enhance winter respiration sufficiently to switch the ecosystem annual net carbon exchange from a sink to source, resulting in net CO2 release to the atmosphere.  相似文献   

16.
长白山阔叶红松林皆伐迹地土壤呼吸作用   总被引:10,自引:0,他引:10       下载免费PDF全文
 利用静态箱式法测量长白山阔叶红松(Pinus koraiensis)林伐后13年的皆伐迹地土壤呼吸作用。分析表明,皆伐迹地土壤呼吸作用日变化趋势呈单峰曲线,峰谷值出现时间较林地提前2~4 h,与土壤5 cm深度温度变化趋势基本一致。整个生长季节皆伐迹地土壤呼吸速率约为林地的75%,土壤温度与土壤呼吸作用存在显著的指数关系。在降水量集中的生长季,土壤水分对土壤呼吸作用具有一定的抑制作用,利用温度和水分双因子模型可以较好地解释皆伐迹地土壤呼吸作用的变异。阔叶红松林皆伐后生物量减少和微环境变化是造成土壤呼吸作用强度和动态特征发生变化的重要原因。  相似文献   

17.
Expanding high‐elevation and high‐latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south‐central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land‐use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow‐covered tundra areas. The positive climate feedback of high‐latitude and high‐elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.  相似文献   

18.
The impact of changes in winter soil frost regime on soil CO2 concentration and its atmospheric exchange in a boreal Norway spruce forest was investigated using a field‐scale soil frost manipulation experiment. The experiment comprised three treatments: deep soil frost, shallow soil frost and control plots (n= 3). Winter soil temperatures and soil frost distribution were significantly altered by the different treatments. The average soil CO2 concentrations during the growing season were significantly lower in plots with deep soil frost than in plots with shallow soil frost. The average CO2 soil–atmosphere exchange rate exhibited the same pattern, and differences in soil respiration rates among the treatments were statistically significant. Both the variation in soil CO2 concentration and the CO2 soil–atmosphere exchange rate could statistically be explained by the differences in the maximum soil frost depth during the previous winter. A response model for growing season soil respiration rates suggests that every 1 cm change in winter soil frost depth will change the emission rates by ca. 0.01 g CO2 m?2 day?1, corresponding to 0.2–0.5% of the estimated net ecosystem productivity (NEP). This suggests that the soil frost regime has a significant influence on the C balance of the system, because interannual variations in soil frost up to 60 cm have been recorded at the site. We conclude that winter climate conditions can be important in controlling C balances in northern terrestrial ecosystems, and also that indirect effects of the winter season must be taken into account, because these can affect the prevailing conditions during the growing season.  相似文献   

19.
基于2005年玉米(Zea mays)生长季土壤呼吸作用及其影响因子的动态观测资料,分析了玉米地土壤呼吸作用的日和季动态及其对土壤温度和生物因子协同作用的响应。结果表明,玉米地土壤呼吸作用的日变化为不对称的单峰型,其最小值和最大值分别出现在6∶00~7∶00和13∶00左右;玉米生长季中,土壤呼吸速率波动较大,其均值为3.16 μmol CO2·m-2·s-1,最大值为4.87 μmol CO2·m-2·s-1,出现在7月28日,最小值为1.32 μmol CO2·m-2·s-1,出现在5月4日。在土壤呼吸作用日变化中,土壤呼吸速率(SR)与10 cm深度土壤温度(T)呈显著的线性关系:SR=αT+β。在整个生长季节,玉米净初级生产力(NPP)与直线斜率(α)呈显著正相关,生物量(B)也明显影响直线的截距(β)。基于此,建立了玉米地土壤呼吸作用动态模型SR=(aNPP+b)T+cB2+dB+e。土壤呼吸作用季节变化的大部分(97%)可以由土壤温度、NPP和生物量的季节变化来解释。当仅考虑土壤温度对土壤呼吸作用的影响时,指数方程会过大或过小地估计了土壤呼吸强度。该文的结果强调了生物因子在土壤呼吸作用季节变化中的重要作用,同时指出土壤呼吸作用模型不仅要考虑土壤温度的影响,在生物因子影响土壤呼吸作用的温度敏感性时,还应该把生物因子纳入模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号