首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of phosphate in initial iron deposition in apoferritin   总被引:1,自引:0,他引:1  
Y G Cheng  N D Chasteen 《Biochemistry》1991,30(11):2947-2953
Ferritins from microorganisms to man are known to contain varying amounts of phosphate which has a pronounced effect on the structural and magnetic properties of their iron mineral cores. The present study was undertaken to gain insight into the role of phosphate in the early stages of iron accumulation by ferritin. The influence of phosphate on the initial deposition of iron in apoferritin (12 Fe/protein) was investigated by EPR, 57Fe M?ssbauer spectroscopy, and equilibrium dialysis. The results indicate that phosphate has a significant influence on iron deposition. The presence of 1 mM phosphate during reconstitution of ferritin from apoferritin, Fe(II), and O2 accelerates the rate of oxidation of the iron 2-fold at pH 7.5. In the presence or absence of phosphate, the rate of oxidation at 0 degrees C follows simple first-order kinetics with respect to Fe(II) with half-lives of 1.5 +/- 0.3 or 2.8 +/- 0.2 min, respectively, consistent with a single pathway for iron oxidation when low levels of iron are added to the apoprotein. This pathway may involve a protein ferroxidase site where phosphate may bind iron(II), shifting its redox potential to a more negative value and thus facilitating its oxidation. Following oxidation, an intermediate mononuclear Fe(III)-protein complex is formed which exhibits a transient EPR signal at g' = 4.3. Phosphate accelerates the rate of decay of the signal by a factor of 3-4, producing EPR-silent oligonuclear or polynuclear Fe(III) clusters. In 0.5 mM Pi, the signal decays according to a single phase first-order process with a half-life near 1 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The iron core within phytoferritin interior usually contains the high ratio of iron to phosphate, agreeing with the fact that phosphorus and iron are essential nutrient elements for plant growth. It was established that iron oxidation and incorporation into phytoferritin shell occurs in the plastid(s) where the high concentration of phosphate occurs. However, so far, the role of phosphate in iron oxidative deposition in plant ferritin has not been recognized yet. In the present study, Fe(II) oxidative deposition in pea seed ferritin (PSF) was aerobically investigated in the presence of phosphate. Results indicated that phosphate did not affect the stoichiometry of the initial iron(II) oxidation reaction that takes place at ferroxidase centers upon addition of ≤48 Fe(II)/protein to apoferritin, but increased the rate of iron oxidation. At high Fe(II) fluxes into ferritin (>48 Fe(II)/protein), phosphate plays a more significant role in Fe(II) oxidative deposition. For instance, phosphate increased the rate of Fe(II) oxidation about 1–3 fold, and such an increase depends on the concentration of phosphate in the range of 0–2 mM. This effect was attributed to the ability of phosphate to improve the regeneration activity of ferroxidase centers in PSF. In addition, the presence of phosphate caused a significant decrease in the absorption properties of iron core, indicating that phosphate is involved in the formation of the iron core.  相似文献   

3.
Despite previous detection of hydroxyl radical formation during iron deposition into ferritin, no reports exist in the literature concerning how it might affect ferritin function. In the present study, hydroxyl radical formation during Fe(II) oxidation by apoferritin was found to be contingent on the "ferroxidase" activity (i.e., H subunit composition) exhibited by apoferritin. Hydroxyl radical formation was found to affect both the stoichiometry and kinetics of Fe(II) oxidation by apoferritin. The stoichiometry of Fe(II) oxidation by apoferritin in an unbuffered solution of 50 mM NaCl, pH 7.0, was approximately 3.1 Fe(II)/O(2) at all iron-to-protein ratios tested. The addition of HEPES as an alternate reactant for the hydroxyl radical resulted in a stoichiometry of about 2 Fe(II)/O(2) at all iron-to-protein ratios. HEPES functioned to protect apoferritin from oxidative modification, for its omission from reaction mixtures containing Fe(II) and apoferritin resulted in alterations to the ferritin consistent with oxidative damage. The kinetic parameters for the reaction of recombinant human H apoferritin with Fe(II) in HEPES buffer (100 mM) were: K(m) = 60 microM, k(cat) = 10 s(-1), and k(cat)/K(m) = 1.7 x 10(5) M(-1) x (-1). Collectively, these results contradict the "crystal growth model" for iron deposition into ferritin and, while our data would seem to imply that the ferroxidase activity of ferritin is adequate in facilitating Fe(II) oxidation at all stages of iron deposition into ferritin, it is important to note that these data were obtained in vitro using nonphysiologic conditions. The possibility that these findings may have physiological significance is discussed.  相似文献   

4.
The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.  相似文献   

5.
Ferritin is a ubiquitous iron-storage protein that has 24 subunits. Each subunit of ferritins that exhibit high Fe(II) oxidation rates has a diiron binding site, the so-called ferroxidase center (FC). The role of the FC appears to be essential for the iron-oxidation catalysis of ferritins. Studies of the iron oxidation by mammalian, bacterial, and archaeal ferritin have indicated different mechanisms are operative for Fe(II) oxidation, and for inhibition of the Fe(II) oxidation by Zn(II). These differences are presumably related to the variations in the amino acid residues of the FC and/or transport channels. We have used a combination of UV–vis spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry to study the inhibiting action of Zn(II) ions on the iron-oxidation process by apoferritin and by ferritin aerobically preloaded with 48 Fe(II) per 24-meric protein, and to study a possible role of phosphate in initial iron mineralization by Pyrococcus furiosus ferritin (PfFtn). Although the empty FC can accommodate two zinc ions, binding of one zinc ion to the FC suffices to essentially abolish iron-oxidation activity. Zn(II) no longer binds to the FC nor does it inhibit iron core formation once the FC is filled with two Fe(III). Phosphate and vanadate facilitate iron oxidation only after formation of a stable FC, whereupon they become an integral part of the core. These results corroborate our previous proposal that the FC in PfFtn is a stable prosthetic group, and they suggest that its formation is essential for iron-oxidation catalysis by the protein.  相似文献   

6.
Human ferritins sequester and store iron as a stable FeOOH((s)) mineral core within a protein shell assembled from 24 subunits of two types, H and L. Core mineralization in recombinant H- and L-subunit homopolymer and heteropolymer ferritins and several site-directed H-subunit variants was investigated to determine the iron oxidation/hydrolysis chemistry as a function of iron flux into the protein. Stopped-flow absorption spectrometry, UV spectrometry, and electrode oximetry revealed that the mineral core forms by at least three pathways, not two as previously thought. They correspond to the ferroxidase, mineral surface, and the Fe(II) + H2O2 detoxification reactions, respectively: [see reactions]. The H-subunit catalyzed ferroxidase reaction 1 occurs at all levels of iron loading of the protein but decreases with increasing iron added (48-800 Fe(II)/protein). Reaction 2 is the dominant reaction at 800 Fe(II)/protein, whereas reaction 3 occurs largely at intermediate iron loadings of 100-500 Fe(II)/protein. Some of the H2O2 produced in reaction 1 is consumed in the detoxification reaction 3; the 2/1 Fe(II)/H2O2 stoichiometry of reaction 3 minimizes hydroxyl radical production during mineralization. Human L-chain ferritin and H-chain variants lacking functional nucleation and/or ferroxidase sites deposit their iron largely through the mineral surface reaction 2. H2O2 is shown to be an intermediate product of dioxygen reduction in L-chain as well as in H-chain and H-chain variant ferritins.  相似文献   

7.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

8.
Ferritin plays an important role in iron metabolism and our aim is to understand the mechanisms by which iron is sequestered within its protein shell as the mineral ferrihydrite. We present M?ssbauer spectroscopic data on recombinant human and horse spleen ferritin from which we draw the following conclusions: (1) that apoferritin catalyses Fe(II) oxidation as a first step in ferrihydrite deposition, (2) that the catalysis of Fe(II) oxidation is associated with residues situated within H chains, at the postulated 'ferroxidase centre' and not in the 3-fold inter-subunit channels previously suggested as the initial Fe(II) binding and oxidation site; (3) that both isolated Fe(III) and Fe(III) mu-oxo-bridged dimers found previously by M?ssbauer spectroscopy to be intermediates in iron-core formation in horse spleen ferritin, are located on H chains; and (4) that these dimers form at ferroxidase centres. The importance of the ferroxidase centre is suggested by the conservation of its ligands in many ferritins from vertebrates, invertebrates and plants. Nevertheless iron-core formation does occur in those ferritins that lack ferroxidase centres even though the initial Fe(II) oxidation is relatively slow. We compare the early stages of core formation in such variants and in horse spleen ferritin in which only 10-15% of its chains are of the H type. We discuss our findings in relation to the physiological role of isoferritins in iron storage processes.  相似文献   

9.
The ubiquitous 24-meric iron-storage protein ferritin and multicopper oxidases such as ceruloplasmin or hephaestin catalyze oxidation of Fe(II) to Fe(III), using molecular oxygen as oxidant. The ferroxidase activity of these proteins is essential for cellular iron homeostasis. It has been reported that the amyloid precursor protein (APP) also has ferroxidase activity. The activity is assigned to a ferroxidase site in the E2 domain of APP. A synthetic 22-residue peptide that carries the putative ferroxidase site of E2 domain (FD1 peptide) has been claimed to encompass the same activity. We previously tested the ferroxidase activity of the synthetic FD1 peptide but we did not observe any activity above the background oxidation of Fe(II) by molecular oxygen. Here we used isothermal titration calorimetry to study Zn(II) and Fe(II) binding to the natural E2 domain of APP, and we employed the transferrin assay and oxygen consumption measurements to test the ferroxidase activity of the E2 domain. We found that this domain neither in the presence nor in the absence of the E1 domain binds Fe(II) and it is not able to catalyze the oxidation of Fe(II). Binding of Cu(II) to the E2 domain did not induce ferroxidase activity contrary to the presence of redox active Cu(II) centers in ceruloplasmin or hephaestin. Thus, we conclude that E2 or E1 domains of APP do not have ferroxidase activity and that the potential involvement of APP as a ferroxidase in the pathology of Alzheimer’s disease must be re-evaluated.  相似文献   

10.
Ferritins are nearly ubiquitous iron storage proteins playing a fundamental role in iron metabolism. They are composed of 24 subunits forming a spherical protein shell encompassing a central iron storage cavity. The iron storage mechanism involves the initial binding and subsequent O2-dependent oxidation of two Fe2+ ions located at sites A and B within the highly conserved dinuclear "ferroxidase center" in individual subunits. Unlike animal ferritins and the heme-containing bacterioferritins, the Escherichia coli ferritin possesses an additional iron-binding site (site C) located on the inner surface of the protein shell close to the ferroxidase center. We report the structures of five E. coli ferritin variants and their Fe3+ and Zn2+ (a redox-stable alternative for Fe2+) derivatives. Single carboxyl ligand replacements in sites A, B, and C gave unique effects on metal binding, which explain the observed changes in Fe2+ oxidation rates. Binding of Fe2+ at both A and B sites is clearly essential for rapid Fe2+ oxidation, and the linking of FeB2+ to FeC2+ enables the oxidation of three Fe2+ ions. The transient binding of Fe2+ at one of three newly observed Zn2+ sites may allow the oxidation of four Fe2+ by one dioxygen molecule.  相似文献   

11.
Iron deposition within the iron storage protein ferritin involves a complex series of events consisting of Fe(2+) binding, transport, and oxidation at ferroxidase sites and mineralization of a hydrous ferric oxide core, the storage form of iron. In the present study, we have examined the thermodynamic properties of Fe(2+) binding to recombinant human H-chain apoferritin (HuHF) by isothermal titration calorimetry (ITC) in order to determine the location of the primary ferrous ion binding sites on the protein and the principal pathways by which the Fe(2+) travels to the dinuclear ferroxidase center prior to its oxidation to Fe(3+). Calorimetric titrations show that the ferroxidase center is the principal locus for Fe(2+) binding with weaker binding sites elsewhere on the protein and that one site of the ferroxidase center, likely the His65 containing A-site, preferentially binds Fe(2+). That only one site of the ferroxidase center is occupied by Fe(2+) implies that Fe(2+) oxidation to form diFe(III) species might occur in a stepwise fashion. In dilute anaerobic protein solution (3-5 microM), only 12 Fe(2+)/protein bind at pH 6.51 increasing to 24 Fe(2+)/protein at pH 7.04 and 7.5. Mutation of ferroxidase center residues (E62K+H65G) eliminates the binding of Fe(2+) to the center, a result confirming the importance of one or both Glu62 and His65 residues in Fe(2+) binding. The total Fe(2+) binding capacity of the protein is reduced in the 3-fold hydrophilic channel variant S14 (D131I+E134F), indicating that the primary avenue by which Fe(2+) gains access to the interior of ferritin is through these eight channels. The binding stoichiometry of the channel variant is one-third that of the recombinant wild-type H-chain ferritin whereas the enthalpy and association constant for Fe(2+) binding are similar for the two with an average values (DeltaH degrees = 7.82 kJ/mol, binding constant K = 1.48 x 10(5) M(-)(1) at pH 7.04). Since channel mutations do not completely prevent Fe(2+) binding to the ferroxidase center, iron gains access to the center in approximately one-third of the channel variant molecules by other pathways.  相似文献   

12.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

13.
Previous kinetics studies with homopolymer ferritins (bullfrog M-chain, human H-chain and Escherichia coli bacterial ferritins) have established that a mu-1,2-peroxo diferric intermediate is formed during Fe(II) oxidation by O2 at the ferroxidase site of the protein. The present study was undertaken to determine whether such an intermediate is formed also during iron oxidation in horse spleen ferritin (HoSF), a naturally occurring heteropolymer ferritin of H and L-subunits (approximately 3.3 H-chains/HoSF), and to assess its role in the formation of the mineral core. Multi-wavelength stopped-flow spectrophotometry of the oxidative deposition of iron in HoSF demonstrated that a transient peroxo complex (lambda(max) approximately 650 nm) is produced in this protein as for other ferritins. The peroxo complex in HoSF is formed about fourfold slower than in human H-chain (HuHF) and decays more slowly (approximately threefold) as well, at an iron level of two Fe(II)/H-chain. However, as found for HuHF, a second intermediate is formed in HoSF as a decay product of the peroxo complex. Only one-third of the expected peroxo complex forms at the ferroxidase centers of HoSF when two Fe(II)/H-subunits are added to the protein, dropping to only approximately 14% when 20 Fe(II)/H-chain are added, indicating a declining role of the peroxo complex in iron deposition. In contrast to HuHF, HoSF does not enzymatically regenerate the observable peroxo complex. The kinetics of mineralization in HoSF are modeled satisfactorily by a mechanism in which the ferroxidase site rapidly produces an incipient core from a single turnover of iron, upon which subsequent Fe(II) is oxidized autocatalytically to build the Fe(O)OH(s) mineral core. This model supports a role for the L-chain in iron mineralization and helps to explain the widespread occurrence of heteropolymer ferritins in tissues of vertebrates.  相似文献   

14.
Bacterioferritins are members of a class of spherical shell-like iron storage proteins that catalyze the oxidation and hydrolysis of iron at specific sites inside the protein shell, resulting in formation of a mineral core of hydrated ferric oxide within the protein cavity. Electrode oximetry/pH stat was used to study iron oxidation and hydrolysis chemistry in E. coli bacterioferritin. Consistent with previous UV-visible absorbance measurements, three distinct kinetic phases were detected, and the stoichiometric equations corresponding to each have been determined. The rapid phase 1 reaction corresponds to pairwise binding of 2 Fe(2+) ions at a dinuclear site, called the ferroxidase site, located within each of the 24 subunits, viz., 2Fe(2+) + P(Z) --> [Fe(2)-P](Z) + 4H(+), where P(Z) is the apoprotein of net charge Z and [Fe(2)-P](Z) represents a diferrous ferroxidase complex. The slower phase 2 reaction corresponds to the oxidation of this complex by molecular oxygen according to the net equation: [Fe(2)-P](Z) + (1)/(2)O(2) --> [Fe(2)O-P](Z) where [Fe(2)O-P](Z) represents an oxidized diferric ferroxidase complex, probably a mu-oxo-bridged species as suggested by UV-visible and EPR spectrometric titration data. The third phase corresponds to mineral core formation according to the net reaction: 4Fe(2+) + O(2) + 6H(2)O --> 4FeO(OH)((core)) + 8H(+). Iron oxidation is inhibited by the presence of Zn(2+) ions. The patterns of phase 2 and phase 3 inhibition are different, though inhibition of both phases is complete at 48 Zn(2+)per 24mer, i.e., 2 Zn(2+) per ferroxidase center.  相似文献   

15.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

16.
Fe(III) storage by ferritin is an essential process of the iron homeostasis machinery. It begins by translocation of Fe(II) from outside the hollow spherical shape structure of the protein, which is formed as the result of self-assembly of 24 subunits, to a di-iron binding site, the ferroxidase center, buried in the middle of each active subunit. The pathway of Fe(II) to the ferroxidase center has remained elusive, and the importance of self-assembly for the functioning of the ferroxidase center has not been investigated. Here we report spectroscopic and metal ion binding studies with a mutant of ferritin from Pyrococcus furiosus (PfFtn) in which self-assembly was abolished by a single amino acid substitution. We show that in this mutant metal ion binding to the ferroxidase center and Fe(II) oxidation at this site was obliterated. However, metal ion binding to a conserved third site (site C), which is located in the inner surface of each subunit in the vicinity of the ferroxidase center and is believed to be the path for Fe(II) to the ferroxidase center, was not disrupted. These results are the basis of a new model for Fe(II) translocation to the ferroxidase center: self-assembly creates channels that guide the Fe(II) ions toward the ferroxidase center directly through the protein shell and not via the internal cavity and site C. The results may be of significance for understanding the molecular basis of ferritin-related disorders such as neuroferritinopathy in which the 24-meric structure with 432 symmetry is distorted.  相似文献   

17.
Iron uptake by the ubiquitous iron-storage protein ferritin involves the oxidation of two Fe(II) ions located at the highly conserved dinuclear “ferroxidase centre” in individual subunits. We have measured X-ray absorption spectra of four mutants (K86Q, K86Q/E27D, K86Q/E107D, and K86Q/E27D/E107D, involving variations of Glu to Asp on either or both sides of the dinuclear ferroxidase site) of recombinant human H-chain ferritin (rHuHF) in their complexes with reactive Fe(II) and redox-inactive Zn(II). The results for Fe–rHuHf are compared with those for recombinant Desulfovibrio desulfuricans bacterioferritin (DdBfr) in three states: oxidised, reduced, and oxidised/Chelex®-treated. The X-ray absorption near-edge region of the spectrum allows the oxidation state of the iron ions to be assessed. Extended X-ray absorption fine structure simulations have yielded accurate geometric information that represents an important refinement of the crystal structure of DdBfr; most metal–ligand bonds are shortened and there is a decrease in ionic radius going from the Fe(II) to the Fe(III) state. The Chelex®-treated sample is found to be partly mineralised, giving an indication of the state of iron in the cycled-oxidised (reduced, then oxidised) form of DdBfr, where the crystal structure shows the dinuclear site to be only half occupied. In the case of rHuHF the complexes with Zn(II) reveal a surprising similarity between the variants, indicating that the rHuHf dinuclear site is rigid. In spite of this, the rHuHf complexes with Fe(II) show a variation in reactivity that is reflected in the iron oxidation states and coordination geometries.  相似文献   

18.
Ferritins are ubiquitous iron mineralizing and storage proteins that play an important role in iron homeostasis. Although excess iron is stored in the cytoplasm, most of the metabolically active iron is processed in the mitochondria of the cell. Little is known about how these organelles regulate iron homeostasis and toxicity. The recently discovered human mitochondrial ferritin (MtF), unlike other mammalian ferritins, is a homopolymer of 24 subunits that has a high degree of sequence homology with human H-chain ferritin (HuHF). Parallel experiments with MtF and HuHF reported here reveal striking differences in their iron oxidation and hydrolysis chemistry despite their similar diFe ferroxidase centers. In contrast to HuHF, MtF does not regenerate its ferroxidase activity after oxidation of its initial complement of Fe(II) and generally has considerably slower ferroxidation and mineralization activities as well. MtF exhibits sigmoidal kinetics of mineralization more characteristic of an L-chain than an H-chain ferritin. Site-directed mutagenesis reveals that serine 144, a residue situated near the ferroxidase center in MtF but absent from HuHF, is one player in this impairment of activity. Additionally only one-half of the 24 ferroxidase centers of MtF are functional, further contributing to its lower activity. Stopped-flow absorption spectrometry of Fe(II) oxidation by O(2) in MtF shows the formation of a transient diiron(III) mu-peroxo species (lambda(max) = 650 nm) as observed in HuHF. Also, as for HuHF, minimal hydroxyl radical is produced during the oxidative deposition of iron in MtF using O(2) as the oxidant. However, the 2Fe(II) + H(2)O(2) detoxification reaction found in HuHF does not occur in MtF. The structural differences and the physiological implications of the unique iron oxidation properties of MtF are discussed in light of these results.  相似文献   

19.
Ferritin utilizes ferroxidase activity to incorporate iron. Iron uptake kinetics of bovine spleen apoferritin (H: L = 1 : 1.1) were compared with those of recombinant H chain ferritin and L chain ferritin homopolymers. H chain ferritin homopolymer showed an iron uptake rate identical to bovine spleen apoferritin (0.19 and 0.21 mmol/min/micromol of protein, respectively), and both showed iron concentration-dependent uptake. In contrast, the L chain homopolymer, which lacks ferroxidase, did not incorporate iron and showed the same level of iron autoxidation in the absence of ferritin. Bovine spleen apoferritin was shown to have two iron concentration-dependent uptake pathways over a range of 0.02-0.25 mM ferrous ammonium sulfate (FAS) by an Eadie-Scatchard plot (v/[FAS] versus v), whereas the H chain ferritin homopolymer was found to have only one pathway. Of the two Km values found in bovine spleen apoferritin, the lower mean Km value was 9.0 microM, while that of the H chain homopolymer was 11.0 microM. H chain ferritin homopolymer reached a saturating iron uptake rate at 0.1 mM FAS, while bovine spleen apoferritin incorporated more iron even at 0.25 mM FAS. These results suggest that the intrinsic ferroxidase of ferritin plays a significant role in iron uptake, and the L chain cooperates with the H chain to increase iron uptake.  相似文献   

20.
Zhao G  Bou-Abdallah F  Yang X  Arosio P  Chasteen ND 《Biochemistry》2001,40(36):10832-10838
The ferritins are a class of iron storage and detoxification proteins that play a central role in the biological management of iron. These proteins have a catalytic site, "the ferroxidase site", located on the H-type subunit that facilitates the oxidation of Fe(II) to Fe(III) by O(2). Measurements during the past 10 years on a number of vertebrate ferritins have provided evidence that H(2)O(2) is produced at this diiron ferroxidase site. Recently reported experiments using three different analytical methods with horse spleen ferritin (HoSF) have failed to detect H(2)O(2) production in this protein [Lindsay, S., Brosnahan, D., and Watt, G. D. (2001) Biochemistry 40, 3340-3347]. These findings contrast with earlier results reporting H(2)O(2) production in HoSF [Xu, B., and Chasteen, N. D. (1991) J. Biol. Chem. 266, 19965-19970]. Here a sensitive fluorescence assay and an assay based on O(2) evolution in the presence of catalase were used to demonstrate that H(2)O(2) is produced in HoSF as previously reported. However, because of the relatively few H-chain ferroxidase sites in HoSF and the reaction of H(2)O(2) with the protein, H(2)O(2) is more difficult to detect in this ferritin than in recombinant human H-chain ferritin (HuHF). The proper sequence of addition of reagents is important for measurement of the total amount of H(2)O(2) produced during the ferroxidation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号