首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.  相似文献   

2.
This theoretical article attempts to locate the concept of a zone of proximal development within the holistic context of cultural-historical theory. In order to analyze the psychological content of processes taking place within the zone of proximal development, special content of personality and mental development has been singled out. We propose methodologically correlating the concept "zone of proximal development" and personality development. It has been demonstrated that neoformations and leading activity, which serve as indicators of child development, also define the zone of proximal development at each specific psychological age. The article argues that only education that influences the zone of proximal development's boundaries is developmental education (as understood by L. S. Vygotsky).  相似文献   

3.
《应用发育科学》2013,17(4):200-214
This article describes a developmental systems approach to applied developmental science (ADS), which provides a framework to design and evaluate technology-rich programs that promote positive development by emphasizing the strengths and assets of young people instead of focusing on diminishing or preventing risk-taking behaviors. Until now, most of the psychoeducational programs conceived within the ADS model have not focused on the role of new technologies in young people's lives. This absence is particularly striking given that, in today's world, new technologies play an important role in different areas of the lives of young people, such as education, entertainment, socialization, and communication. This article presents the concept of identity construction environments (ICE), an interdisciplinary model that proposes guidelines to design and study new technologies purposefully created to promote positive youth development (PYD). Two types of ICE have been developed: one focusing on stand-alone technologies for learning, such as the Zora virtual city; and the other focusing on an approach for developing technologically rich learning contexts, such as the Project Inter-Actions robotics workshops. This article presents both examples of ICE and describes how their design fosters the 6 components of PYD. Initial findings from pilot studies conducted with very different populations of youth engaged in both types of ICE—such as young children, adolescents, and chronically ill children—are presented.  相似文献   

4.
Johnson NA  Porter AH 《Genetica》2007,129(1):57-70
Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed "developmental system drift": the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky-Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.  相似文献   

5.
The emerging field of evolutionary developmental biology (evo-devo) continues to operate largely under a single paradigm. In this paradigm developmental regulatory genes and processes are compared among a collection of "model organisms" selected primarily on the basis of their historical utility in the study of development. This approach has proven to be extremely informative, revealing an unexpected deep evolutionary conservation among developmental genes and genetic systems. Despite its success, concern has been expressed regarding its limitations. We discuss the "model organism" paradigm in evo-devo research. Based on our interpretation of its limitations, we propose a separate but complementary approach that is centered on "model groups." These groups are selected on the basis of their taxonomic affinity and their relevance to questions of interest to evo-devo biologists. We further discuss the Tetraodontiformes (Teleostei, Pisces) as an example of a "model group" for the evo-devo study of vertebrate skeletal elements.  相似文献   

6.
This article addresses accountability issues that affect music education policy and implementation in the neoliberal education system. Using examples from education reform in Ontario, Canada, the author argues that two forms of accountability imbalances fostered by the neoliberal state—hierarchical answerability over communicative reason and top-down over bottom-up policymaking—allow the use of music curricula for political ends, to the detriment of curricular integrity and classroom delivery. The article also discusses how central governments that are responsible for developing standardized music curricula and allocating resources in an accountability vacuum may tacitly establish that "basic" subjects such as literacy, numeracy, and science are "more mandatory" than a mandated music curricula. The article concludes by recommending ways in which the centralized development of music education policy and resource allocation can be made more equitable both for those who encounter the curriculum at the local level and for the subject.  相似文献   

7.
On the basis of extensive research on university–community collaborative education projects in southern California and southern Sweden, this article proposes two roles and a research strategy and approach as elements essential to sustained collaboration. Recognition and fulfillment of the roles of "spider" and "firesoul," while "leading with the little finger," contribute to educational anthropology by linking qualitative and ethnographic research with university and community learning, practice, and service in a process of involvement.  相似文献   

8.
The moss Physcomitrella patens has become a powerful model system in modern plant biology. Highly standardized cell culture techniques, as well as the necessary tools for computational biology, functional genomics and proteomics have been established. Large EST collections are available and the complete moss genome will be released soon. A simple body plan and the small number of different cell types in Physcomitrella facilitate the study of developmental processes. In the filamentous juvenile moss tissue, developmental decisions rely on the differentiation of single cells. Developmental steps are controlled by distinct phytohormones and integration of environmental signals. Especially the phytohormones auxin, cytokinin, and abscisic acid have distinct effects on early moss development. In this article, we review current knowledge about phytohormone influences on early moss development in an attempt to fully unravel the complex regulatory signal transduction networks underlying the developmental decisions of single plant cells in a holistic systems biology approach.  相似文献   

9.
With regard to the theoretical place of environmental factors in development, three approaches to evolution and development can be distinguished. One is the neo-Darwinist approach in which genetic programs are central. The other two present themselves as alternatives to the gene-centrism in present-day biology. I discuss pairwise similarities and differences between the three approaches. Goodwin's approach differs from neo-Darwinism in its favoured types of causes, but shares the internalist perspective on embryological development. The constructionist alternative proposes to enlarge the developmental system to include external factors, and shares with neo-Darwinism the emphasis on contingent causes. Thus there is neither a grand dichotomy in biology, between neo-Darwinism and its alternative, nor a grand trichotomy. Different purposes make different approaches useful. I conclude by arguing that environmental influences should have a more prominent place in developmental biology.  相似文献   

10.
Just as everyone has a different learning style, teachers too approach the task from different perspectives. There are five basic teaching perspectives or styles: transmission, apprenticeship, developmental, nurturing, and social justice. The acronym BIAS is useful to describe the beliefs, intentions, assessments, and strategies associated with each perspective. The authors present a hypothetical 1-week rotation in plastic and reconstructive surgery in which a student encounters instructors who embody the five basic teaching perspectives. By presenting these perspectives, the authors introduce valuable teaching techniques that can benefit all those charged with the education of learners along the spectrum from premedical to continuing education venues. Educational objectives include the following: (1) explain and illustrate different approaches to effective teaching in plastic surgery; (2) introduce readers to the Teaching Perspectives Inventory as a means of determining their primary teaching style; and (3) argue for a "plurality of the good" in teaching.  相似文献   

11.
For more than a century, embryologists have been exploring various model systems to gain insights into developmental processes. This article presents an overview of the role of chironomid midges in embryology research since their introduction as model organisms in the 19th century. We present the vestiges of bibliography since the days of Weismann (1834–1914), who raised preliminary queries to unravel many unique features of insect embryogenesis using midges as a crucible. Unfortunately, over the years, chironomid midges got lost into obscurity as a model for developmental biology, which is evident from the paucity of developmental biology–related literature on midges in the past decades. Through this essay, the authors intend to share reminiscences of the heydays of chironomid research with the wider community of zoologists with an aim of reviving chironomid embryology. Midges not only possess the basic qualities essential for an ideal model system, but being one of the ancestral dipteran stocks, they can also prove an excellent test system for evo‐devo, transgenetic, and embryogenomic investigations that utilize methodologies at the interface of developmental biology and high‐throughput molecular genetic and genomics approach. An introspection of re‐introducing chironomid midgesas model system will be rewarding for the contemporary developmental biologists.  相似文献   

12.
"海洋微生物学实验"课程是高等院校海洋科学类专业的重要基础课程,在海洋科学人才培养过程中发挥重要作用。开展"海洋微生物学实验"课程的思政建设,是落实高校全员全程全方位培养青年海洋微生物人才的重要途径。本文以"海洋微生物学实验"课程为例,挖掘提炼课程中蕴含的思政元素,从课程建设、教学理念、教学目标、教学方法、考核评价体系、教学反思等方面开展课程思政教育的探索和实践,旨在将专业知识和思政元素有机融合,实现知识传授和价值引领同频共振。  相似文献   

13.
This article suggests that apparent disagreements between the concept of developmental constraints and neo-Darwinian views on morphological evolution can disappear by using a different conceptualization of the interplay between development and selection. A theoretical framework based on current evolutionary and developmental biology and the concepts of variational properties, developmental patterns and developmental mechanisms is presented. In contrast with existing paradigms, the approach in this article is specifically developed to compare developmental mechanisms by the morphological variation they produce and the way in which their functioning can change due to genetic variation. A developmental mechanism is a gene network, which is able to produce patterns in space though the regulation of some cell behaviour (like signalling, mitosis, apoptosis, adhesion, etc.). The variational properties of a developmental mechanism are all the pattern transformations produced under different initial and environmental conditions or IS-mutations. IS-mutations are DNA changes that affect how two genes in a network interact, while T-mutations are mutations that affect the topology of the network itself. This article explains how this new framework allows predictions not only about how pattern formation affects variation, and thus phenotypic evolution, but also about how development evolves by replacement between pattern formation mechanisms. This article presents testable inferences about the evolution of the structure of development and the phenotype under different selective pressures. That is what kind of pattern formation mechanisms, in which relative temporal order, and which kind of phenotypic changes, are expected to be found in development.  相似文献   

14.
How many processes are responsible for phenotypic evolution?   总被引:1,自引:0,他引:1  
SUMMARY In addressing phenotypic evolution, this article reconsiders natural selection, random drift, developmental constraints, and internal selection in the new extended context of evolutionary developmental biology. The change of perspective from the "evolution of phenotypes" toward an "evolution of ontogenies" (evo-devo perspective) affects the reciprocal relationships among these different processes. Random drift and natural selection are sibling processes: two forms of post-productional sorting among alternative developmental trajectories, the former random, the latter nonrandom. Developmental constraint is a compound concept; it contains even some forms of natural ("external" and "internal") selection. A narrower definition ("reproductive constraints") is proposed. Internal selection is not a selection caused by an internal agent. It is a form of environment-independent selection depending on the level of the organism's internal developmental or functional coordination. Selection and constraints are the main deterministic processes in phenotypic evolution but they are not opposing forces. Indeed, they are continuously interacting processes of evolutionary change, but with different roles that should not be confused.  相似文献   

15.
16.
The question of form and extent of biological and/or cultural influences on female and male behaviour and performance is marking a major focus in present scientific research. Accordingly, a broad spectrum of approaches in research and interpretations of results is available. The recent debate on sex and gender is offering two basic objectives for research in education science: First, the critical review of the data and results on sex specifics presented in respect to the articulation of educational aims, topics and methods. Second, the intensified research focus on the developmental consequences of gender and gender roles for boys and girls, women and men. The pedagogical focus is discussed regarding the following three objectives: 1. developmental conditions in early ontogeny, 2. the question of sex specific differences in cognitive abilities in respect to school performance of adolescents, and 3. teaching knowledge on "sex" and "gender" in schools.  相似文献   

17.
The respiratory control system exhibits considerable plasticity, similar to other regions of the nervous system. Plasticity is a persistent change in system behavior triggered by experiences such as changes in neural activity, hypoxia, and/or disease/injury. Although plasticity is observed in animals of all ages, some forms of plasticity appear to be unique to development (i.e., "developmental plasticity"). Developmental plasticity is an alteration in respiratory control induced by experiences during "critical" developmental periods; similar experiences outside the critical period will have little or no lasting effect. Thus complementary experiments on both mature and developing animals are generally needed to verify that the observed plasticity is unique to development. Frequently studied models of developmental plasticity in respiratory control include developmental manipulations of respiratory gas concentrations (O(2) and CO(2)). Environmental factors not specifically associated with breathing may also trigger developmental plasticity, however, including psychological stress or chemicals associated with maternal habits (e.g., nicotine, cocaine). Despite rapid advances in describing models of developmental plasticity in breathing, our understanding of fundamental mechanisms giving rise to such plasticity is poor; mechanistic studies of developmental plasticity are of considerable importance. Developmental plasticity may enable organisms to "fine tune" their phenotype to optimize the performance of this critical homeostatic regulatory system. On the other hand, developmental plasticity could also increase the risk of disease later in life. Future directions for studies concerning the mechanisms and functional implications of developmental plasticity in respiratory motor control are discussed.  相似文献   

18.
This article briefly summarizes the scientific contributions of Nori Satoh, the winner of the 2005 edition of the Kowalevsky Medal, to Developmental Biology and especially to Evo-Devo with his 30 years of research on tunicates - a primitive chordate species. His research began with his pure developmental interest in the clock mechanism of cell differentiation and later expanded into various aspects of evolutionary and developmental phenomena. He is not only known as a founder of molecular biology-based tunicate studies, but also for his world-wide service to education and his prestigious publications in international scientific journals.  相似文献   

19.

Background

Genomic imprinting, a phenomenon referring to nonequivalent expression of alleles depending on their parental origins, has been widely observed in nature. It has been shown recently that the epigenetic modification of an imprinted gene can be detected through a genetic mapping approach. Such an approach is developed based on traditional quantitative trait loci (QTL) mapping focusing on single trait analysis. Recent studies have shown that most imprinted genes in mammals play an important role in controlling embryonic growth and post-natal development. For a developmental character such as growth, current approach is less efficient in dissecting the dynamic genetic effect of imprinted genes during individual ontology.

Results

Functional mapping has been emerging as a powerful framework for mapping quantitative trait loci underlying complex traits showing developmental characteristics. To understand the genetic architecture of dynamic imprinted traits, we propose a mapping strategy by integrating the functional mapping approach with genomic imprinting. We demonstrate the approach through mapping imprinted QTL controlling growth trajectories in an inbred F2 population. The statistical behavior of the approach is shown through simulation studies, in which the parameters can be estimated with reasonable precision under different simulation scenarios. The utility of the approach is illustrated through real data analysis in an F2 family derived from LG/J and SM/J mouse stains. Three maternally imprinted QTLs are identified as regulating the growth trajectory of mouse body weight.

Conclusion

The functional iQTL mapping approach developed here provides a quantitative and testable framework for assessing the interplay between imprinted genes and a developmental process, and will have important implications for elucidating the genetic architecture of imprinted traits.  相似文献   

20.
Von Baer's laws of development observe that an embryo, in the course of its ontogeny, progresses through a series of forms which diverge increasingly from the embryonic forms of related species, and in an evolutionary interpretation, from those of its phylogenetic ancestors. This observation on the relation of phylogeny to ontogeny is explained by Wimsatt's (1986) "Developmental Lock" model of complex generative systems, which proposes that evolution is constrained to alter developmental programs in a manner that usually modifies or adds new complexity to pre-existent developmental functions at positions relatively "downstream" in the causal structure. If the Developmental Lock model is correct, (1) evolution should have resulted in hierarchically ordered developmental programs, and (2) the most important developmental functions in the hierarchy should be ancient. Wimsatt also suggests that developmental functions be analyzed according to a degree property called "generative entrenchment", which replaces the temporal analysis in the traditional formulation of von Baer's laws. Herein, a substantial body of data on Drosophila ontogeny is analyzed according to generative entrenchment, in order to try the effectiveness of this form of analysis, and also to empirically test these two main predictions of the Developmental Lock model. The novel analytic approach proves to be fruitful, both in generating experimental hypotheses and in ordering existing data. Moreover, data concerning the developmental functions discussed here indicate that the order of the Drosophila developmental program conforms to the predictions of Wimsatt's model with few deviations. Explanations of the anomalies are offered, along with proposals for experiments to test some of those explanations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号