首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Linkage of human narcolepsy with HLA association to chromosome 4p13-q21   总被引:2,自引:0,他引:2  
Although narcolepsy is highly associated with human leukocyte antigen (HLA) DQ6/DQB1*0602 and/or DR2/DRB1*1501, most individuals with the HLA haplotype are free of narcolepsy. This indicates that HLA alone makes a relatively small contribution to the development of narcolepsy and that a non-HLA gene(s) can contribute to the genetic predisposition even in narcoleptic cases with HLA association. We conducted a genome-wide linkage search for narcolepsy in eight Japanese families with 21 DR2-positive patients (14 narcoleptic cases with cataplexy and 7 cases with an incomplete form of narcolepsy). A lod score of 3.09 suggested linkage to chromosome 4p13-q21. A lod score of 1.53 was obtained at the HLA-DRB1 locus, though this lod score may be biased since all the affected patients and many of the family members were DR2-positive. No other loci including hypocretin, hypocretin receptor 1, and hypocretin receptor 2 had lod scores greater than 1.0. The present study suggests that chromosome 4p13-q21 contains a second locus for HLA-associated human narcolepsy.  相似文献   

3.
We explored the role of hypocretins in human narcolepsy through histopathology of six narcolepsy brains and mutation screening of Hcrt, Hcrtr1 and Hcrtr2 in 74 patients of various human leukocyte antigen and family history status. One Hcrt mutation, impairing peptide trafficking and processing, was found in a single case with early onset narcolepsy. In situ hybridization of the perifornical area and peptide radioimmunoassays indicated global loss of hypocretins, without gliosis or signs of inflammation in all human cases examined. Although hypocretin loci do not contribute significantly to genetic predisposition, most cases of human narcolepsy are associated with a deficient hypocretin system.  相似文献   

4.

Background

Because the prevalence and characteristics of primary headache have yet to be thoroughly studied in patients with hypersomnia disorders, including narcolepsy and idiopathic hypersomnia, we examined these parameters in the Japanese population.

Methods

In a multicentre cross-sectional survey, among 576 consecutive outpatients with sleep disorders, 68 narcolepsy patients and 35 idiopathic hypersomnia patients were included. Additionally, 61 healthy control subjects participated. Semi-structured headache questionnaires were administered to all participants.

Results

The patients with narcolepsy (52.9%) and idiopathic hypersomnia (77.1%) more frequently experienced headache than the healthy controls (24.6%; p<0.0001). The prevalence rates were 23.5%, 41.2% and 4.9% for migraine (p<0.0001) and 16.2%, 23.5% and 14.8% (p = 0.58) for tension-type headache among the narcolepsy patients, the idiopathic hypersomnia patients and the control subjects, respectively. Those who experienced migraine more frequently experienced excessive daytime sleepiness, defined as an Epworth Sleepiness Scale score of ≥10, than those who did not experience headache among the patients with narcolepsy (93.8% vs. 65.6%, p = 0.040) and idiopathic hypersomnia (86.7% vs. 37.5%, p = 0.026). Dream-enacting behaviour (DEB), as evaluated by the rapid eye movement sleep disorders questionnaire, was more frequently observed in the narcolepsy patients than in the idiopathic hypersomnia patients and the control subjects. An increased DEB frequency was observed in the narcolepsy patients with migraines compared to those without headache.

Conclusions

Migraines were frequently observed in patients with narcolepsy and idiopathic hypersomnia. DEB is a characteristic of narcolepsy patients. Further studies are required to assess the factors that contribute to migraines in narcolepsy and idiopathic hypersomnia patients.  相似文献   

5.
6.

The aim of this study was to describe the polysomnographic features of childhood-onset narcolepsy. A retrospective review was performed on children with narcolepsy. The polysomnogram findings were compared with reference values obtained from normative data in the general population. Narcolepsy subjects had a mean initial sleep latency of 10.9 min on nocturnal PSG, which was shorter by a mean of 18 min than corresponding values from normative data (P < 0.001). Short initial REM latency on nocturnal PSG correlated with the number of SOREMPs on MSLT in subjects with narcolepsy (P = 0.007). These findings may assist in the clinical diagnosis of narcolepsy.

  相似文献   

7.

Background

Narcolepsy is a chronic sleep disorder with strong genetic predisposition causing excessive daytime sleepiness and cataplexy. A sudden increase in childhood narcolepsy was observed in Finland soon after pandemic influenza epidemic and vaccination with ASO3-adjuvanted Pandemrix. No increase was observed in other age groups.

Methods

Retrospective cohort study. From January 1, 2009 to December 31, 2010 we retrospectively followed the cohort of all children living in Finland and born from January 1991 through December 2005. Vaccination data of the whole population was obtained from primary health care databases. All new cases with assigned ICD-10 code of narcolepsy were identified and the medical records reviewed by two experts to classify the diagnosis of narcolepsy according to the Brighton collaboration criteria. Onset of narcolepsy was defined as the first documented contact to health care because of excessive daytime sleepiness. The primary follow-up period was restricted to August 15, 2010, the day before media attention on post-vaccination narcolepsy started.

Findings

Vaccination coverage in the cohort was 75%. Of the 67 confirmed cases of narcolepsy, 46 vaccinated and 7 unvaccinated were included in the primary analysis. The incidence of narcolepsy was 9.0 in the vaccinated as compared to 0.7/100,000 person years in the unvaccinated individuals, the rate ratio being 12.7 (95% confidence interval 6.1–30.8). The vaccine-attributable risk of developing narcolepsy was 1∶16,000 vaccinated 4 to 19-year-olds (95% confidence interval 1∶13,000–1∶21,000).

Conclusions

Pandemrix vaccine contributed to the onset of narcolepsy among those 4 to 19 years old during the pandemic influenza in 2009–2010 in Finland. Further studies are needed to determine whether this observation exists in other populations and to elucidate potential underlying immunological mechanism. The role of the adjuvant in particular warrants further research before drawing conclusions about the use of adjuvanted pandemic vaccines in the future.  相似文献   

8.
Reduced number of hypocretin neurons in human narcolepsy   总被引:50,自引:0,他引:50  
Murine and canine narcolepsy can be caused by mutations of the hypocretin (Hcrt) (orexin) precursor or Hcrt receptor genes. In contrast to these animal models, most human narcolepsy is not familial, is discordant in identical twins, and has not been linked to mutations of the Hcrt system. Thus, the cause of human narcolepsy remains unknown. Here we show that human narcoleptics have an 85%-95% reduction in the number of Hcrt neurons. Melanin-concentrating hormone (MCH) neurons, which are intermixed with Hcrt cells in the normal brain, are not reduced in number, indicating that cell loss is relatively specific for Hcrt neurons. The presence of gliosis in the hypocretin cell region is consistent with a degenerative process being the cause of the Hcrt cell loss in narcolepsy.  相似文献   

9.
Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems physiologically controlled by orexin neurons, such as the histamine system. To address this question, we tested whether some of narcolepsy signs would be detected in mice lacking histamine signaling (HDC-KO). Moreover, we studied double-mutant mice lacking both histamine signaling and orexin neurons (DM) to evaluate whether the absence of histamine signaling would modulate narcolepsy symptoms produced by orexin deficiency. Mice were instrumented with electrodes for recording the electroencephalogram and electromyogram and a telemetric arterial pressure transducer. Sleep attacks fragmenting wakefulness, cataplexy, excess rapid-eye-movement sleep (R) during the activity period, and enhanced increase of arterial pressure during R, which are hallmarks of narcolepsy in mice, did not occur in HDC-KO, whereas they were observed in DM mice. Thus, these narcolepsy signs are neither caused nor abrogated by the absence of histamine. Conversely, the lack of histamine produced obesity in HDC-KO and to a greater extent also in DM. Moreover, the regularity of breath duration during R was significantly increased in either HDC-KO or DM relative to that in congenic wild-type mice. Defects of histamine transmission may thus modulate the metabolic and respiratory phenotype of murine narcolepsy.  相似文献   

10.
Michael Schredl 《Dreaming》1998,8(2):103-107
The present study investigated dream recall and dream content in patients with narcolepsy. Compared to healthy controls, patients with narcolepsy reported higher dream recall frequency and more negatively toned and bizarre dreams, confirming earlier findings.  相似文献   

11.

Background

Narcolepsy results from immune-mediated destruction of hypocretin secreting neurons in hypothalamus, however the triggers and disease mechanisms are poorly understood. Vaccine-attributable risk of narcolepsy reported so far with the AS03 adjuvanted H1N1 vaccination Pandemrix has been manifold compared to the AS03 adjuvanted Arepanrix, which contained differently produced H1N1 viral antigen preparation. Hence, antigenic differences and antibody response to these vaccines were investigated.

Methods and Findings

Increased circulating IgG-antibody levels to Pandemrix H1N1 antigen were found in 47 children with Pandemrix-associated narcolepsy when compared to 57 healthy children vaccinated with Pandemrix. H1N1 antigen of Arepanrix inhibited poorly these antibodies indicating antigenic difference between Arepanrix and Pandemrix. High-resolution gel electrophoresis quantitation and mass spectrometry identification analyses revealed higher amounts of structurally altered viral nucleoprotein (NP) in Pandemrix. Increased antibody levels to hemagglutinin (HA) and NP, particularly to detergent treated NP, was seen in narcolepsy. Higher levels of antibodies to NP were found in children with DQB1*06∶02 risk allele and in DQB1*06∶02 transgenic mice immunized with Pandemrix when compared to controls.

Conclusions

This work identified 1) higher amounts of structurally altered viral NP in Pandemrix than in Arepanrix, 2) detergent-induced antigenic changes of viral NP, that are recognized by antibodies from children with narcolepsy, and 3) increased antibody response to NP in association of DQB1*06∶02 risk allele of narcolepsy. These findings provide a link between Pandemrix and narcolepsy. Although detailed mechanisms of Pandemrix in narcolepsy remain elusive, our results move the focus from adjuvant(s) onto the H1N1 viral proteins.  相似文献   

12.
The HLA class II region genes DQB1*0602 and DQA1*0102 are currently the best genetic predictors for narcolepsy in humans (1(. The aim of this study was to identify the HLA DQ alleles (DQB1*0602 and DQA1*0102) in Slovene sporadic narcoleptic patients. 11 patients who fulfilled ICSD criteria for narcolepsy entered the study. DRB1*1501 DQB1*0602 was present in all the patients while DQA1*0102 was absent in 2 patients. We propose that DQB1*0602 typing is important in diagnosing narcolepsy in Slovene patients  相似文献   

13.

Background

A close association between narcolepsy and the Human Leukocyte Antigen (HLA)-DQB1*0602 allele suggests the involvement of the immune system, or possibly an autoimmune process. We investigated serum IgG levels in narcolepsy.

Methodology/Principal Findings

We measured the serum total IgG levels in 159 Japanese narcolepsy-cataplexy patients positive for the HLA-DQB1*0602 allele, 28 idiopathic hypersomnia patients with long sleep time, and 123 healthy controls (the HLA-DQB1*0602 allele present in 45 subjects). The serum levels of each IgG subclass were subsequently measured. The distribution of serum IgG was significantly different among healthy controls negative for the HLA-DQB1*0602 allele (11.66±3.55 mg/ml), healthy controls positive for the HLA-DQB1*0602 allele (11.45±3.43), narcolepsy patients (9.67±3.38), and idiopathic hypersomnia patients (13.81±3.80). None of the following clinical variables, age, disease duration, Epworth Sleepiness Scale, smoking habit and BMI at the time of blood sampling, were associated with IgG levels in narcolepsy or idiopathic hypersomnia. Furthermore we found the decrease in IgG1 and IgG2 levels, stable expression of IgG3, and the increase in the proportion of IgG4 in narcolepsy patients with abnormally low IgG levels. The increase in the proportion of IgG4 levels was also found in narcolepsy patients with normal serum total IgG levels. Idiopathic hypersomnia patients showed a different pattern of IgG subclass distribution with high IgG3 and IgG4 level, low IgG2 level, and IgG1/IgG2 imbalance.

Conclusions/Significance

Our study is the first to determine IgG abnormalities in narcolepsy and idiopathic hypersomnia by measuring the serum IgG levels in a large number of hypersomnia patients. The observed IgG abnormalities indicate humoral immune alterations in narcolepsy and idiopathic hypersomnia. Different IgG profiles suggest immunological differences between narcolepsy and idiopathic hypersomnia.  相似文献   

14.
Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score = 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders.  相似文献   

15.

In four of six subjects with narcolepsy, multiple sleep latency tests-examined disconjugated binocular eye movements were observed in the very beginning of multiple sleep latency test recordings. The eye movements appeared before disappearance of alpha and decrease of chin electromyography. All subjects with disconjugated eye movements had also rapid eye movement sleep without atonia and symptoms of rapid eye movement behavior disorder in their past history. Three of them (all children) had post-vaccination narcolepsy. It is not known whether such eye movements are seen in most narcoleptic subjects or whether they are more common in autoimmune/inflammatory narcolepsy with involvement of the structures that coordinate eye movements.

  相似文献   

16.
Human narcolepsy is a hypersomnia that is affected by multiple genetic and environmental factors. One genetic factor strongly associated with narcolepsy is the HLA-DRB1*1501-DQB1*0602 haplotype in the human leukocyte antigen region on chromosome 6, whereas the other genetic factors are not clear. To discover additional candidate regions for susceptibility or resistance to human narcolepsy, we performed a genomewide association study, using 23,244 microsatellite markers. Two rounds of screening with the use of pooled DNAs yielded 96 microsatellite markers (including 16 markers on chromosome 6) with significantly different estimated frequencies in case and control pools. Markers not located on chromosome 6 were evaluated by the individual typing of 95 cases and 95 controls; 30 markers still showed significant associations. A strong association was displayed by a marker on chromosome 21 (21q22.3). The surrounding region was subjected to high-density association mapping with 14 additional microsatellite markers and 74 SNPs. One microsatellite marker (D21S0012m) and two SNPs (rs13048981 and rs13046884) showed strong associations (P < .0005; odds ratios 0.19-0.33). These polymorphisms were in a strong linkage disequilibrium, and no other polymorphism in the region showed a stronger association with narcolepsy. The region contains three predicted genes--NLC1-A, NLC1-B, and NLC1-C--tentatively named "narcolepsy candidate-region 1 genes," and NLC1-A and NLC1-C were expressed in human hypothalamus. Reporter-gene assays showed that the marker D21S0012m in the promoter region and the SNP rs13046884 in the intron of NLC1-A significantly affected expression levels. Therefore, NLC1-A is considered to be a new resistance gene for human narcolepsy.  相似文献   

17.
Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation.   总被引:59,自引:0,他引:59  
Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.  相似文献   

18.
Hypocretin deficiency causes narcolepsy and may affect neuroendocrine systems and body composition. Additionally, growth hormone (GH) alterations my influence weight in narcolepsy. Symptoms can be treated effectively with sodium oxybate (SXB; γ-hydroxybutyrate) in many patients. This study compared growth hormone secretion in patients and matched controls and established the effect of SXB administration on GH and sleep in both groups. Eight male hypocretin-deficient patients with narcolepsy and cataplexy and eight controls matched for sex, age, BMI, waist-to-hip ratio, and fat percentage were enrolled. Blood was sampled before and on the 5th day of SXB administration. SXB was taken two times 3 g/night for 5 consecutive nights. Both groups underwent 24-h blood sampling at 10-min intervals for measurement of GH concentrations. The GH concentration time series were analyzed with AutoDecon and approximate entropy (ApEn). Basal and pulsatile GH secretion, pulse regularity, and frequency, as well as ApEn values, were similar in patients and controls. Administration of SXB caused a significant increase in total 24-h GH secretion rate in narcolepsy patients, but not in controls. After SXB, slow-wave sleep (SWS) and, importantly, the cross-correlation between GH levels and SWS more than doubled in both groups. In conclusion, SXB leads to a consistent increase in nocturnal GH secretion and strengthens the temporal relation between GH secretion and SWS. These data suggest that SXB may alter somatotropic tone in addition to its consolidating effect on nighttime sleep in narcolepsy. This could explain the suggested nonsleep effects of SXB, including body weight reduction.  相似文献   

19.
The sleep disorder narcolepsy is now considered a neurodegenerative disease because there is a massive loss of neurons containing the neuropeptide hypocretin/orexin (HCRT). In consequence, narcoleptic patients have very low cerebrospinal fluid (CSF) levels of HCRT. Studies in animal models of narcolepsy have shown the neurophysiological role of the HCRT system in the development of this disease. For example, the injection of the neurotoxin named hypocretin-2-saporin (HCRT2/SAP) into the lateral hypothalamus (LH) destroys the HCRT neurons, therefore diminishes the contents of HCRT in the CSF and induces narcoleptic-like behavior in rats. Transplants of various cell types have been used to induce recovery in a variety of neurodegenerative animal models. In models such as Parkinson''s disease, cell survival has been shown to be small but satisfactory. Similarly, cell transplantation could be employed to implant grafts of HCRT cells into the LH or even other brain regions to treat narcolepsy. Here, we report for the first time that transplantation of HCRT neurons into the LH of HCRT2/SAP-lesioned rats diminishes narcoleptic-like sleep behavior. Therefore, cell transplantation may provide an effective method to treat narcolepsy.  相似文献   

20.
Orexins (hypocretins) are a pair of neuropeptides implicated in energy homeostasis and arousal. Recent reports suggest that loss of orexin-containing neurons occurs in human patients with narcolepsy. We generated transgenic mice in which orexin-containing neurons are ablated by orexinergic-specific expression of a truncated Machado-Joseph disease gene product (ataxin-3) with an expanded polyglutamine stretch. These mice showed a phenotype strikingly similar to human narcolepsy, including behavioral arrests, premature entry into rapid eye movement (REM) sleep, poorly consolidated sleep patterns, and a late-onset obesity, despite eating less than nontransgenic littermates. These results provide evidence that orexin-containing neurons play important roles in regulating vigilance states and energy homeostasis. Orexin/ataxin-3 mice provide a valuable model for studying the pathophysiology and treatment of narcolepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号