首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kallmann syndrome (KS), defined by the association of hypogonadotropic hypogonadism and anosmia or hyposmia, can be caused by mutations in the KAL gene on Xp 22.3. This gene encodes an extracellular matrix glycoprotein called anosmin-1, which belongs to the class of cell adhesion molecules. In the absence of a functional KAL protein, migration of both olfactory and gonadotropin-releasing hormone neurons is arrested. A defective anosmin-1 molecule may also play a role in the development of synkinesia and renal agenesis, which are exclusively seen in the X-linked form of KS. We describe the clinical presentation and molecular diagnosis of the defect in two brothers with KS. An X-linked mode of transmission was assumed on the basis of synkinesia and the presence of oligomenorrhoea in the mother. A novel nonsense mutation was found in exon 13 of the KAL gene, encoding the region of the fourth fibronectin type III repeat of anosmin-1, which results in an apparently nonfunctional truncated protein.  相似文献   

2.
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.  相似文献   

3.
Kallmann syndrome (KAL) associates hypogonadotropic hypogonadism and anosmia, i.e. a deficiency of the sense of smell. Anosmia is related to the absence or the hypoplasia of the olfactory bulbs. Hypogonadism is due to GnRH deficiency, and is likely to result from the failed embryonic migration of GnRH-synthesizing neurons. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway. Kallmann syndrome is genetically heterogeneous. The gene responsible for the X-chromosome linked form of the disease, KAL-1, has been identified in 1991. KAL1 encodes a ~95 kDa glycoprotein of unknown function, which is present locally in various extracellular matrices during the period of organogenesis. The recent finding that FGFR1 mutations are involved in an autosomal dominant form of Kallmann syndrome (KAL-2), combined to the analysis of mutant mouse embryos that no longer express Fgfr1 in the telencephalon, suggests that the disease results from a deficiency in FGF-signaling at the earliest stage of olfactory bulb morphogenesis. We propose that the role of the KAL1 gene product, the extracellular matrix protein anosmin-1, is to enhance FGF-signaling, and suggest that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X-inactivation) explains the higher prevalence of the disease in males.  相似文献   

4.
Anosmin-1, encoded by the KAL-1 gene, is the protein defective in the X-linked form of Kallmann syndrome. This human developmental disorder is characterized by defects in cell migration and axon target selection. Anosmin-1 is an extracellular matrix protein that plays a role, in vitro, in processes such as cell adhesion, neurite outgrowth, axon guidance, and axon branching. The zebrafish possesses two orthologues of the KAL-1 gene: kal1a and kal1b, which encode anosmin-1a and anosmin-1b, respectively. Previous in situ hybridization studies have shown that kal1a and kal1b mRNAs are expressed in undetermined cells of the inner ear but not in neuromast cells. Using specific antibodies against anosmin-1a and anosmin-1b, we report here that both proteins are expressed in sensory hair cells of the inner ear cristae ampullaris and the lateral line neuromasts. Accumulation of these proteins was observed mainly at the level of the hair bundle and also at the cell membrane. In neuromast hair cells, immunogold scanning electronmicroscopy demonstrated that anosmin-1a and anosmin-1b were present at the surface of the stereociliary bundle. In addition, anosmin-1a, but not anosmin-1b, was detected on the track of the ampullary nerve. This is the first report of anosmin-1 expression in sensory hair cells of the inner ear and lateral line, and along the ampullary nerve track.  相似文献   

5.
In a microarray analysis of human retinal pigment epithelial cells (HRPE) treated with TGF-β, in addition to the alteration of a number of known Extracellular matrix (ECM)-related genes regulated by TGF-β, we found a significant increase in the expression of Kallmann Syndrome (KAL)-1 gene, that codes for the protein anosmin-1. Enhanced expression of KAL-1 by TGF-β was validated by real-time PCR analysis. In in vitro experiments, TGF-β receptor inhibitor abolished TGF-β-induced expression of KAL-1. Immunofluorescence staining showed increased presence of anosmin-1 in TGF-β treated HRPE cells, with distinct localization at the intercellular junctions. Treatment of HRPE cells with TGF-β enhanced secretion of anosmin-1 and the release of anosmin-1 was further augmented by heparin sulfate. Enhanced secretion of anosmin-1 in the presence of TGF-β and heparin was also observed in other ocular cells such as corneal epithelial and corneal fibroblast cultures. The role of anosmin-1, a protein with adhesion functions, in retinal structure, function and pathology has not been known and remains to be investigated.  相似文献   

6.
Functional expression of KAL1 gene is critical in the migration of GnRH neurons from the olfactory placode to the hypothalamus in embryogenesis. This gene thus far has not been shown to play a functional role in any other physiological or pathological process either in the developed brain or in peripheral tissues. We show here that KAL1 gene expression is decreased in early stage and increased in later stages of cancers. Screening of colon, lung and ovarian cancer cDNA panels indicated significant decrease in KAL1 expression in comparison to corresponding uninvolved tissues. However, KAL1 expression increased with the progression of cancer from early (I and II) stages to later (III and IV) stages of the cancer. There was a direct correlation between the TGF-β and KAL1 expression in colon cancer cDNA. Using colon cancer cell lines, we showed that TGF-β induces KAL1 gene expression and secretion of anosmin-1 protein (KAL1 coded protein). We further report that hypoxia induces anosmin-1 expression; anosmin-1 protects cancer cells from apoptosis activated by hypoxia and increases cancer cell mobility. Using siRNA technique we found that KAL1 expression following hypoxia is hypoxia-inducible factor (HIF-1) α dependent. Our results suggest that KAL1 gene expression plays an important role in cancer metastasis and protection from apoptosis.  相似文献   

7.
8.
9.
Nawal El Ansari 《Andrologie》2008,18(2):127-130
Kallmann syndrome (KS) is a rare, heterogeneous disorder consisting of congenital hypogonadotropic hypogonadism, associated with anosmia (or hyposmia) and other clinical manifestations such as mirror movements, and renal, urological and neurosensory disorders. The presence of anosmia with micropenis in boys is suggestive of the diagnostic of KS. In KS, the GnRH neurons do not migrate correctly from the olfactory placode to the hypothalamus during development and olfactory bulbs also fail to form, leading to anosmia. Mutations in KAL1 which encodes Anosmin-1, are responsible for the X-linked form of KS. Anosmin-1 is normally expressed in the brain, facial mesenchyme, mesonephros and metanephros. It is required to promote migration of GnRH neurons into the hypothalamus. It also allows migration of olfactory neurons from the olfactory bulbs to the hypothalamus. The loss of function mutations in FGFR1 “fibroblast growth factor” were identified in 2003 as a cause of autosomal forms of this disease. An additional autosomal cause of Kallmann syndrome was recently identified by a mutation in the prokineticin receptor-2 gene (PROKR2) (KAL-3) and its ligand prokineticin 2 (PROK2) (KAL-4). Mutations in these genes induce various degrees of olfactory and reproductive dysfunction, but not the other symptoms seen in KAL-1 and KAL-2 forms of KS. Neuropilin2, which has an important role in migration of GnRH neurons, is a recent candidate gene for KS. The authors describe the genetic features and recent findings of KS, necessary to understand this disease.  相似文献   

10.
The physiological role of anosmin-1, defective in the X chromosome-linked form of Kallmann syndrome, is not yet known. Here, we show that anti-anosmin-1 antibodies block the formation of the collateral branches of rat olfactory bulb output neurons (mitral and tufted cells) in organotypic cultures. Moreover, anosmin-1 greatly enhances axonal branching of these dissociated neurons in culture. In addition, coculture experiments with either piriform cortex or anosmin-1-producing CHO cells demonstrate that anosmin-1 is a chemoattractant for the axons of these neurons, suggesting that this protein, which is expressed in the piriform cortex, attracts their collateral branches in vivo. We conclude that anosmin-1 has a dual branch-promoting and guidance activity, which plays an essential role in the patterning of mitral and tufted cell axon collaterals to the olfactory cortex.  相似文献   

11.
cDNA clones for the X-linked PGK-1 were obtained from a tammar wallaby liver by PCR and sequenced. The PGK-1 gene published here is the consensus sequence of those clones. The sequence represents an open reading frame of 1251 bp. Sequence comparisons to X-linked and autosomal sequences showed the greatest homology with the X-linked PGK-1 genes in eutherian species. This sequence opens the way for studying the paternal X inactivation phenomenon in marsupials and will assist in defining the time course of mammalian evolution.  相似文献   

12.
13.
A new gene from the distal short arm of the human X chromosome has recently been cloned and characterized. Mutations in this gene lead to the neuronal migration defect observed in Kallmann syndrome. Although there is no direct proof for the involvement of this gene in neuronal migration, significant similarities between its predicted protein product and neural adhesion molecules have been found. X-linked Kallmann syndrome represents the first example in vertebrates of a neuronal migration defect for which the gene has been isolated.  相似文献   

14.
Kallmann syndrome, a form of idiopathic hypogonadotropic hypogonadism, is characterized by developmental abnormalities of the reproductive system and abnormal olfaction. Despite association of certain genes with idiopathic hypogonadotropic hypogonadism, the genetic inheritance and expression are complex and incompletely known. In the present study, seven Kallmann syndrome pedigrees in an ethnic Han Chinese population were screened for genetic mutations. The exons and intron–exon boundaries of 19 idiopathic hypogonadotropic hypogonadism (idiopathic hypogonadotropic hypogonadism)-related genes in seven Chinese Kallmann syndrome pedigrees were sequenced. Detected mutations were also tested in 70 sporadic Kallmann syndrome cases and 200 Chinese healthy controls. In pedigrees 1, 2, and 7, the secondary sex characteristics were poorly developed and the patients’ sense of smell was severely or completely lost. We detected a genetic mutation in five of the seven pedigrees: homozygous KAL1 p.R191ter (pedigree 1); homozygous KAL1 p.C13ter (pedigree 2; a novel mutation); heterozygous FGFR1 p.R250W (pedigree 3); and homozygous PROKR2 p.Y113H (pedigrees 4 and 5). No genetic change of the assayed genes was detected in pedigrees 6 and 7. Among the 70 sporadic cases, we detected one homozygous and one heterozygous PROKR2 p.Y113H mutation. This mutation was also detected heterozygously in 2/200 normal controls and its pathogenicity is likely questionable. The genetics and genotype–phenotype relationships in Kallmann syndrome are complicated. Classical monogenic inheritance does not explain the full range of genetic inheritance of Kallmann syndrome patients. Because of stochastic nature of genetic mutations, exome analyses of Kallmann syndrome patients may provide novel insights.  相似文献   

15.
Kallmann syndrome associates hypogonadotropic hypogonadism and anosmia and is probably due to a defect in the embryonic migration of olfactory and GnRH-synthesizing neurons. The Kallmann gene had been localized to Xp22.3. In this study 67 kb of genomic DNA, corresponding to a deletion interval containing at least part of the Kallmann gene, were sequenced. Two candidate exons, identified by multiparameter computer programs, were found in a cDNA encoding a protein of 679 amino acids. This candidate gene (ADMLX) is interrupted in its 3' coding region in the Kallmann patient, in which the proximal end of the KAL deletion interval was previously defined. A 5' end deletion was detected in another Kallmann patient. The predicted protein sequence shows homologies with the fibronectin type III repeat. ADMLX thus encodes a putative adhesion molecule, consistent with the defect of embryonic neuronal migration.  相似文献   

16.
Kallmann syndrome is a genetically heterogeneous developmental disease characterised by a partial or complete lack of olfactory bulb development. Two genes underlying this disease have so far been identified: the KAL-1 gene, which encodes anosmin-1, an extracellular matrix protein that promotes axonal guidance and branch formation in vitro; and KAL-2, which encodes the known FGFR1. The implication of FGFR1 and anosmin-1 in the same developmental disease led us to test whether anosmin-1 and FGFR1 interact during the development of the olfactory system. In this paper, we showed that the two proteins co-localise in the olfactory bulb during development in rat. Using cross-immunoprecipitation assays of olfactory bulb extracts, we also demonstrated that anosmin-1 and FGFR1 are comprised within the same protein complex. Moreover, we show that anosmin-1 expression in CHO transfected cells increases FGFR1 accumulation, suggesting that anosmin-1 may act as a positive extracellular regulator of FGFR1 signalling. Taken together, our findings strongly suggest that anosmin-1 is an essential component of a FGFR1 pathway that plays a key role during olfactory bulb morphogenesis.  相似文献   

17.
Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome.  相似文献   

18.
19.
The signaling molecule DHH, secreted by Sertoli cells, has essential regulatory functions in testicular differentiation. DHH is required for the differentiation of peritubular myoid cells that line the seminiferous cords and steroidogenic Leydig cells. The testicular cords in Dhh-null male mice lack a basal lamina and develop abnormally. To date, the DHH-signaling pathway has never been examined outside of any eutherian mammals. This study examined the effects of inhibition of DHH signaling in a marsupial mammal, the tammar wallaby, by culturing gonads in vitro in the presence of the hedgehog-signaling inhibitors cyclopamine and forskolin. Disruption of hedgehog signaling in the tammar testes caused highly disorganized cord formation. SOX9 protein remained strongly expressed in Sertoli cells, laminin distribution was highly fragmented, and germ cells were distributed around the cortical regions of treated testes in an ovarianlike morphology. This suggests that hedgehog signaling regulates cord formation in the tammar wallaby testis as it does in eutherian mammals. These data demonstrate that the hedgehog pathway has been highly conserved in mammals for at least 160 million years.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号