首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A synthetic Cl(-) channel-forming peptide, C-K4-M2GlyR, applied to the apical membrane of human epithelial cell monolayers induces transepithelial Cl(-) and fluid secretion. The sequence of the core peptide, M2GlyR, corresponds to the second membrane-spanning region of the glycine receptor, a domain thought to line the pore of the ligand-gated Cl(-) channel. Using a pharmacological approach, we show that the flux of Cl(-) through the artificial Cl(-) channel can be regulated by modulating basolateral K(+) efflux through Ca(2+)-dependent K(+) channels. Application of C-K4-M2GlyR to the apical surface of monolayers composed of human colonic cells of the T84 cell line generated a sustained increase in short-circuit current (I(SC)) and caused net fluid secretion. The current was inhibited by the application of clotrimazole, a non-specific inhibitor of K(+) channels, and charybdotoxin, a potent inhibitor of Ca(2+)-dependent K(+) channels. Direct activation of these channels with 1-ethyl-2-benzimidazolinone (1-EBIO) greatly amplified the Cl(-) secretory current induced by C-K4-M2GlyR. The effect of the combination of C-K4-M2GlyR and 1-EBIO on I(SC) was significantly greater than the sum of the individual effects of the two compounds and was independent of cAMP. Treatment with 1-EBIO also increased the magnitude of fluid secretion induced by the peptide. The cooperative action of C-K4-M2GlyR and 1-EBIO on I(SC) was attenuated by Cl(-) transport inhibitors, by removing Cl(-) from the bathing solution and by basolateral treatment with K(+) channel blockers. These results indicate that apical membrane insertion of Cl(-) channel-forming peptides such as C-K4-M2GlyR and direct activation of basolateral K(+) channels with benzimidazolones may coordinate the apical Cl(-) conductance and the basolateral K(+) conductance, thereby providing a pharmacological approach to modulating Cl(-) and fluid secretion by human epithelia deficient in cystic fibrosis transmembrane conductance regulator Cl(-) channels.  相似文献   

2.
Flavonoids belong to a large group of plant polyphenols that are consumed daily in large amounts. Our previous findings have shown that baicalein, a major flavonoid derived from the medicinal herb Scutellariae radix, induces Cl(-) secretion across rat colonic mucosa. The current study examines the effect of baicalein on Cl(-) secretion in human colonic epithelial (T84) cells and its interaction with Ca(2+)- and cAMP-dependent secretagogues. We have employed a technique that allows concurrent monitoring of short-circuit current (I(SC)) and [Ca(2+)](i) in polarized epithelium. Basolateral application of baicalein induced a concentration-dependent increase in I(SC). The increase in I(SC) was because of Cl(-) secretion and was not accompanied by any discernible increase in [Ca(2+)](i). Baicalein acted synergistically with Ca(2+)- but not cAMP-dependent secretagogues. In the presence of baicalein, the carbachol and histamine induced increases in I(SC) that were markedly potentiated while increases in [Ca(2+)](i) were not significantly enhanced. Baicalein treatment uncoupled Cl(-) secretion from inhibitory effects normally generated by muscarinic activation. Baicalein treatment also resulted in increased cAMP content and activated PKA activity. Nystatin permeabilization studies revealed that baicalein stimulated an apical Cl(-) current but did not activate any basolateral K(+) current. These data suggest that baicalein potentiates Ca(2+)-mediated Cl(-) secretion through a signaling pathway involving cAMP and protein kinase A, most likely through the cystic fibrosis transmembrane conductance regulator in the apical membrane.  相似文献   

3.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

4.
Recent studies on frog skin acini have challenged the question whether Cl(-) secretion or Na(+) absorption in the airways is driven by luminal K(+) channels in series to a basolateral K(+) conductance. We examined the possible role of luminal K(+) channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl(-) secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+2)Cl(-)K(+) cotransporter azosemide. Similarly, the compound 293B, a blocker of basolateral KCNQ1/KCNE3 K(+) channels effectively blocked Cl(-) secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K(+) channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K(+) channels in mouse airways, using luminal 293B, clotrimazole and Ba(2+) or different K(+) channel toxins such as charybdotoxin, apamin and a-dendrotoxin. Thus, the present study demonstrates Cl(-) secretion in mouse airways, which depends on basolateral Na(+2)Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl(-) channels. Cl(-) secretion is maintained by the activity of basolateral K(+) channels, while no clear evidence was found for the presence of a luminal K(+) conductance.  相似文献   

5.
Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance (G(Cl)) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral G(Cl) was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl(2) = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl(2) > tamoxifen > 4,4'-dinitro-2,2'-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of G(Cl) were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive G(Cl); 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive G(Cl); and 3) a forskolin-activated, linear G(Cl), which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl(-) secretion or support transcellular Cl(-) absorption.  相似文献   

6.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.  相似文献   

7.
The diarrhea associated with malabsorption of bile salts such as the secondary hydrophobic taurodeoxycholate (TDC) may be partly explained by the TDC-induced increase in colon Cl(-) secretion. We, therefore, investigated the effects of TDC (0.5-8 mM) on electrical parameters and electrolyte transport of rat proximal colon mucosa mounted in Ussing chambers. Colonic secretion, measured as short circuit current (I(SC)), progressively increased on mucosal incubation with TDC ranging 0.5-2 mM; up to TDC 2 mM, a spontaneous recovery toward control values with no changes in epithelial resistance (Rt), and lactate dehydrogenase (LDH) release was observed. In contrast, for TDC > 2 mM, I(SC) increased further and the effect was progressive and associated with a significant decrease in the Rt and increased LDH release, implying a cytolytic effect. Mucosal preincubation with the Cl(-) channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), fully prevented the precytolytic effect of TDC on I(SC). Serosal preincubation with furosemide, a Na(+)/K(+)/2Cl(-) cotransporter inhibitor, significantly reduced TDC-induced increase in I(SC). Inhibition of the basolateral Ca(2+)-dependent K(+) channel-rSK4-with serosal clotrimazole or incubation with mucosal Ca(2+)-free (EGTA) buffer completely prevented precytolytic TDC-induced increase in I(SC). In conclusion, Cl(-) secretion is activated in colon mucosa by TDC low concentrations; while at higher concentrations, a detergent cytotoxic effect intervenes. Activation of the Ca(2+)-dependent basolateral K(+) pathway, through TDC-induced apical Ca(2+) influx, provides the Na(+)/K(+)/2Cl(-) basolateral activation, thereby the driving force for the apical exit of Cl(-) ions. These findings further enhance the knowledge of the pathogenic mechanisms of diarrhea associated with bile salt malabsorption.  相似文献   

8.
The eurohaline fish, Fundulus heteroclitus, adapts rapidly to enhanced salinity by increasing the ion secretion by gill chloride cells. An increase of approximately 70 mOsm in plasma osmolarity was previously found during the transition. To mimic this in vitro, isolated opercular epithelia of seawater-adapted Fundulus mounted in a modified Ussing chamber were exposed to an increase in NaCl and/or osmolarity on the basolateral side, which immediately increased I(SC). Various Cl(-) channel blockers as well as the K(+) channel blocker Ba(2+) added to the basolateral side all inhibited the steady-state as well as the hypertonic stimulation of I(SC). The exists -agonist isoproterenol stimulates I(SC) in standard Ringer solutions. In contrast, when cell volume was kept at the larger value by simultaneous addition of water, the stimulation with isoproterenol was abolished, suggesting that the key process for activation of the Na(+), K(+), 2Cl(-) cotransporter is cell shrinkage. The protein kinase C (PKC) inhibitor chelerythrine and the myosin light chain kinase (MLCK) inhibitor ML-7 had strong inhibitory effects on the mannitol activation of I(SC), thus both MLCK and PKC are involved. The two specific protein kinase A (PKA) inhibitors H-89 and KT 5720 had no effect after mannitol addition whereas isoproterenol stimulation was completely blocked by H-89. This indicates that PKA is involved in the activation of the apical Cl(-) channel via c-AMP whereas the shrinkage activation of the Na(+), K(+), 2Cl(-) cotransporter is independent of PKA activation. The steady-state Cl(-) secretion was stimulated by an inhibitor of serine/threonine phosphatases of the PP-1 and PP-2A type and inhibited by a PKC inhibitor but not by a PKA inhibitor. Thus, it seems to be determined by continuous phosphorylation and dephosphorylation involving PKC but not PKA. The steady-state Cl(-) secretion and the maximal obtainable Cl(-) secretion were measured in freshwater-adapted fish and in fish retransferred to saltwater. No I(SC) could be measured in freshwater-adapted fish or in the fish within the first 18 h after transfer to saltwater. As evidenced from Western blot analysis using antiserine-antibodies, a heavily serine phosphorylated protein of about 190 kDa was consistently observed in the saltwater-acclimated fish, but was only weakly present in freshwater-acclimated fish. This observation indicates that acclimatization to saltwater stimulates the expression of this 190-kDa protein and/or a serine/threonine kinase, which subsequently phosphorylates the protein.  相似文献   

9.
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or)). At a holding potential of -80 mV gamma was 18 pS for both (gp)Cl(or) currents, and at +80 mV gamma was 67 and 40 pS, respectively. Identity as Cl(-) channels was confirmed in excised patches by changing bath ion composition. From reversal potentials, relative permeability of K(+) over Cl(-) (P(K)/P(Cl)) was 0.07 +/- 0.03, with relative permeability of Na(+) over Cl(-) (P(Na)/P(Cl)) = 0.08 +/- 0.04. A second type of Cl(-) channel was seen with linear current-voltage (I-V) relations ((gp)Cl(L)), having subtypes with gamma of 21, 13, and 8 pS. Epinephrine or forskolin increased the number of open (gp)Cl(or) and (gp)Cl(L). Open probabilities (P(o)) of (gp)Cl(or), (gp)Cl(L21), and (gp)Cl(L13) were voltage dependent in cell-attached patches, higher at more positive potentials. Kinetics of (gp)Cl(or) were more rapid with epinephrine activation than with forskolin activation. Epinephrine increased P(o) at the resting membrane potential for (gp)Cl(L13). Secretagogue activation of these Cl(-) channels may contribute to stimulation of electrogenic K(+) secretion across colonic epithelium by increasing basolateral membrane Cl(-) conductance that permits Cl(-) exit after uptake via Na(+)-K(+)-2Cl(-) cotransport.  相似文献   

10.
Cl(-) channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. Although a cystic fibrosis transmembrane conductance regulator has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP](i), an alternate Cl(-) secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increasing [Ca(2+)](i). The molecular identity of this Ca(2+)-activated Cl(-) channel is unknown. The present studies in human, mouse, and rat BECs provide evidence that TMEM16A is the operative channel and contributes to Ca(2+)-activated Cl(-) secretion in response to extracellular nucleotides. Furthermore, Cl(-) currents measured from BECs isolated from distinct areas of intrahepatic bile ducts revealed important functional differences. Large BECs, but not small BECs, exhibit cAMP-stimulated Cl(-) currents. However, both large and small BECs express TMEM16A and exhibit Ca(2+)-activated Cl(-) efflux in response to extracellular nucleotides. Incubation of polarized BEC monolayers with IL-4 increased TMEM16A protein expression, membrane localization, and transepithelial secretion (I(sc)). These studies represent the first molecular identification of an alternate, noncystic fibrosis transmembrane conductance regulator, Cl(-) channel in BECs and suggest that TMEM16A may be a potential target to modulate bile formation in the treatment of cholestatic liver disorders.  相似文献   

11.
In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.  相似文献   

12.
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.  相似文献   

13.
We examined the development of K+ secretion after removing Cl- from the basolateral surface of isolated skins of Rana temporaria using noise analysis. K+ secretion was defined by the appearance of a Lorentzian component in the power density spectrum (PDS) when Ba2+ was present in the apical bath (0.5 mM). No Lorentzians were observed when tissues were bathed in control, NaCl Ringer solution. Replacement of basolateral Cl- by gluconate, nitrate, or SO4- (0-Clb) yielded Lorentzians with corner frequencies near 25 Hz, and plateau values (So) that were used to estimate the magnitude of K+ secretion through channels in the apical cell membranes of the principal cells. The response was reversible and reproducible. In contrast, removing apical Cl- did not alter the PDS. Reduction of basolateral Cl- to 11.5 mM induced Lorentzians, but with lower values of So. Inhibition of Na+ transport with amiloride or by omitting apical Na+ depressed K+ secretion but did not prevent its appearance in response to 0-Clb. Using microelectrodes, we observed depolarization of the intracellular voltage concomitant with increased resistance of the basolateral membrane after 0-Clb. Basolateral application of Ba2+ to depolarize cells also induced K+ secretion. Because apical conductance and channel density are unchanged after 0-Clb, we conclude that K+ secretion is "induced" simply by an increase of the electrical driving force for K+ exit across this membrane. Repolarization of the apical membrane after 0-Clb eliminated K+ secretion, while further depolarization increased the magnitude of the secretory current. The cell depolarization after 0-Clb is most likely caused directly by a decrease of the basolateral membrane K+ conductance. Ba2(+)-induced Lorentzians also were elicited by basolateral hypertonic solutions but with lower values of So, indicating that cell shrinkage per se could not entirely account for the response to 0-Clb and that the effects of 0-Clb may be partly related to a fall of intracellular Cl-.  相似文献   

14.
The present study investigated the inhibitory effect of extracellular ATP on Na(+) absorption and the possible underlying mechanism in cultured mouse endometrial epithelium using the short-circuit current (I(SC)) technique. The cultured epithelia exhibited a Na(+)-dependent basal current that could be predominately blocked by the epithelial Na(+) channel (ENaC) blocker, amiloride (10 microM). Apical addition of ATP (10 microM) induced a reduction in basal I(SC). However, in the presence of amiloride or when apical Na(+) was removed, the ATP-induced reduction was abolished and an increase in the I(SC) was observed with kinetic characteristics similar to those reported previously for the ATP-induced Cl(-) secretion, indicating that ATP could induce both Cl(-) secretion and inhibition of Na(+) absorption. Further reduction in I(SC) after ATP challenge could be obtained with forskolin (10 microM), which indicates that different inhibitory mechanisms are involved. The ATP-induced inhibition of Na(+) absorption, but not that induced by forskolin, could be abolished by the P(2) receptor antagonist, reactive blue (100 microM), indicating the involvement of a P(2) receptor in mediating the ATP response. ATP and uridine 5'-diphosphate (UDP; 100 microM), a relatively selective agonist for the pyrimidinoceptor, induced separate I(SC) reduction, and distinct I(SC) increases in the presence of amiloride, regardless of the order of drug administration, indicating the involvement of two receptor populations. The ATP-induced inhibition of Na(+) absorption was mimicked by the Ca(2+) ionophore, ionomycin (1 microM), whereas the Ca(2+) chelators, EGTA and BAPTA-AM, abolished the ATP-induced, but not the forskolin-induced, inhibition of Na(+) absorption, suggesting the involvement of a Ca(2+)-dependent pathway. In the presence of the Cl(-) channel blocker, DIDS (100 microM), both inhibitory and stimulatory responses to ATP were abolished, suggesting the involvement of a Ca(2+)-activated Cl(-) channels (CaCCs) in mediating both ATP responses. The ATP-induced as well as the forskolin-induced reduction in I(SC) was not observed when Cl(-) was removed from the bathing solution, indicating that Cl(-) permeation is important for the inhibition of Na(+) absorption. The results suggest the presence of a Ca(2+)-dependent ENaC-inhibiting mechanism involving CaCC in mouse endometrial epithelial cells. Thus, extracellular nucleotides may play an important role in the fine-tuning of the uterine fluid microenvironment by regulating both Cl(-) secretion and Na(+) absorption across the endometrium.  相似文献   

15.
Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane.  相似文献   

16.
We evaluated the conductances for ion flow across the cellular and paracellular pathways of flounder intestine using microelectrode techniques and ion-replacement studies. Apical membrane conductance properties are dominated by the presence of Ba-sensitive K channels. An elevated mucosal solution K concentration, [K]m, depolarized the apical membrane potential (psi a) and, at [K]m less than 40 mM, the K dependence of psi a was abolished by 1-2 mM mucosal Ba. The basolateral membrane displayed Cl conductance behavior, as evidenced by depolarization of the basolateral membrane potential (psi b) with reduced serosal Cl concentrations, [Cl]s. psi b was unaffected by changes in [K]s or [Na]s. From the effect of mucosal Ba on transepithelial K selectivity, we estimated that paracellular conductance (Gp) normally accounts for 96% of transepithelial conductance (Gt). The high Gp attenuates the contribution of the cellular pathway to psi t while permitting the apical K and basolateral Cl conductances to influence the electrical potential differences across both membranes. Thus, psi a and psi b (approximately 60 mV, inside negative) lie between the equilibrium potentials for K (76 mV) and Cl (40 mV), thereby establishing driving forces for K secretion across the apical membrane and Cl absorption across the basolateral membrane. Equivalent circuit analysis suggests that apical conductance (Ga approximately equal to 5 mS/cm2) is sufficient to account for the observed rate of K secretion, but that basolateral conductance (Gb approximately equal to 1.5 mS/cm2) would account for only 50% of net Cl absorption. This, together with our failure to detect a basolateral K conductance, suggests that Cl absorption across this barrier involves KCl co-transport.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and composition, we investigated whether this regulation was reciprocal by examining whether ENaC regulates CFTR. Co-expression of human (h) CFTR and mouse (m) alphabetagammaENaC in Xenopus oocytes resulted in a significant, 3.7-fold increase in whole-cell hCFTR Cl(-) conductance compared with oocytes expressing hCFTR alone. The forskolin/3-isobutyl-1-methylxanthine-stimulated whole-cell conductance in hCFTR-mENaC co-injected oocytes was amiloride-insensitive, indicating an inhibition of mENaC following hCFTR activation, and it was blocked by DPC (diphenylamine-2-carboxylic acid) and was DIDS (4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid)-insensitive. Enhanced hCFTR Cl(-) conductance was also observed when either the alpha- or beta-subunit of mENaC was co-expressed with hCFTR, but this was not seen when CFTR was co-expressed with the gamma-subunit of mENaC. Single Cl(-) channel analyses showed that both CFTR Cl(-) channel open probability and the number of CFTR Cl(-) channels detected per patch increased when hCFTR was co-expressed with alphabetagammamENaC. We conclude that in addition to acting as a regulator of ENaC, CFTR activity is regulated by ENaC.  相似文献   

18.
19.
Activation of an innate immune response in airway epithelia by the human pathogen Pseudomonas aeruginosa requires bacterial expression of flagellin. Addition of flagellin (10(-7) M) to airway epithelial cell monolayers (Calu-3, airway serous cell-like) increased Cl(-) secretion (I(Cl)) beginning after 3-10 min, reaching a plateau after 20-45 min at DeltaI(Cl) = 15-50 microA/cm(2). Similar, although 10-fold smaller, responses were observed in well-differentiated bronchial epithelial cultures. Flagellin stimulated I(Cl) in the presence of maximally stimulating doses of the purinergic agonist ATP, but had no effects following forskolin. IL-1beta (produced by both epithelia and neutrophils during infections) stimulated I(Cl) similar to flagellin. Flagellin-, IL-1beta-, ATP-, and forskolin-stimulated I(Cl) were inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) blockers GlyH101, CFTRinh172, and glibenclamide. Neither flagellin nor IL-1beta altered transepithelial fluxes of membrane-impermeant dextran (10 kDa) or lucifer yellow (mol wt = 457), but both activated p38, NF-kappaB, and IL-8 secretion. Blockers of p38 (SB-202190 and SB-203580) reduced flagellin- and IL-1beta-stimulated I(Cl) by 33-50% but had smaller effects on IL-8 and NF-kappaB. It is concluded that: 1) flagellin and IL-1beta activated p38, NF-kappaB, IL-8, and CFTR-dependent anion secretion without altering tight junction permeability; 2) p38 played a role in regulating I(Cl) and IL-8 but not NF-kappaB; and 3) p38 was more important in flagellin- than IL-1beta-stimulated responses. During P. aeruginosa infections, flagellin and IL-1beta are expected to increase CFTR-dependent ion and fluid flow into and bacterial clearance from the airways. In cystic fibrosis, the secretory response would be absent, but activation of p38, NF-kappaB, and IL-8 would persist.  相似文献   

20.
Two Cl(-) conductances have been described in the apical membrane of both human and murine proximal airway epithelia that are thought to play predominant roles in airway hydration: (1) CFTR, which is cAMP regulated and (2) the Ca(2+)-activated Cl(-) conductance (CaCC) whose molecular identity is uncertain. In addition to second messenger regulation, cross talk between these two channels may also exist and, whereas CFTR is absent or defective in cystic fibrosis (CF) airways, CaCC is preserved, and may even be up-regulated. Increased CaCC activity in CF airways is controversial. Hence, we have investigated the effects of CFTR on CaCC activity and have also assessed the relative contributions of these two conductances to airway surface liquid (ASL) height (volume) in murine tracheal epithelia. We find that CaCC is up-regulated in intact murine CF tracheal epithelia, which leads to an increase in UTP-mediated Cl(-)/volume secretion. This up-regulation is dependent on cell polarity and is lost in nonpolarized epithelia. We find no role for an increased electrical driving force in CaCC up-regulation but do find an increased Ca(2+) signal in response to mucosal nucleotides that may contribute to the increased Cl(-)/volume secretion seen in intact epithelia. CFTR plays a critical role in maintaining ASL height under basal conditions and accordingly, ASL height is reduced in CF epithelia. In contrast, CaCC does not appear to significantly affect basal ASL height, but does appear to be important in regulating ASL height in response to released agonists (e.g., mucosal nucleotides). We conclude that both CaCC and the Ca(2+) signal are increased in CF airway epithelia, and that they contribute to acute but not basal regulation of ASL height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号