首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chromatin structure of the oocyte-type 5S RNA genes in Xenopus laevis was investigated. Blot hybridization analysis of DNA from micrococcal nuclease digests of erythrocyte nuclei showed that 5S DNA has the same average nucleosome repeat length, 192 +/- 4 base pairs, as two Xenopus satellite DNAs and bulk erythrocyte chromatin. The positions of nuclease-sensitive regions in the 5S DNA repeats of purified DNA and chromatin from erythrocytes were mapped by using an indirect end-labeling technique. Although most of the sites cleaved in purified DNA were also cleaved in chromatin, the patterns of intensities were strikingly different in the two cases. In 5S chromatin, three nuclease-sensitive regions were spaced approximately a nucleosome length apart, suggesting a single, regular arrangement of nucleosomes on most of the 5S DNA repeats. The observed nucleosome locations are discussed with respect to nucleotide sequences known to be important for expression of 5S RNA. Because the preferred locations appear to be reestablished in each repeating unit, despite spacer length heterogeneity, we suggest that the regular chromatin structure reflects the presence of a sequence-specific DNA-binding component on inactive 5S RNA genes.  相似文献   

2.
Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175–185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion.  相似文献   

3.
4.
The nucleosome repeat structure of a rat liver chromatin component containing the satellite I DNA (repeat length 370 bp) was investigated. Digestion experiments with micrococcal nuclease, DNAase II, and the Ca2+/Mg2+-dependent endogenous nuclease of rat liver nuclei revealed a repeat unit of 185 nucleotide pairs which is shorter by approximately 10 bp than the repeat unit of the bulk chromatin of this cell type. The difference seems not to be related to the histone composition which was found to be similar in the two types of chromatin.  相似文献   

5.
6.
Organization of internucleosomal DNA in rat liver chromatin   总被引:6,自引:1,他引:5       下载免费PDF全文
A detailed analysis of the length distribution of DNA in nucleosome dimers trimmed with exonuclease III and S1 nuclease suggests that the previously described variation of internucleosomal distance in rat liver occurs, at least for a subset of the nucleosomes, by integral multiples of the helical repeat of the DNA. Results obtained upon digestion of chromatin with DNase II further suggest that lengths of internucleosomal DNA are integral multiples of the helical repeat of the DNA plus approximately 5 bp. Restraints imposed by these features on the arrangement of nucleosomes along the fiber are discussed.  相似文献   

7.
Micrococcal nuclease digestion of nuclei from sea urchin embryos revealed transient changes in chromatin structure which resulted in a reduction in the repeat length of nascent chromatin DNA as compared with bulk DNA. This was considered to be entirely the consequence of in vivo events at the replication fork (Cell 14, 259, 1978). However, a micrococcal nuclease-generated sliding of nucleosome cores relative to nascent DNA, which might account for the smaller DNA fragments, was not excluded. In vivo [3H]thymidine pulse-labeled nuclei were fixed with a formaldehyde prior to micrococcal nuclease digestion. This linked chromatin proteins to DNA and thus prevented any in vitro sliding of histone cores. All the nascent DNAs exhibiting shorter repeat lengths after micrococcal nuclease digestion, were resolved at identical mobilities in polyacrylamide gels of DNA from fixed and unfixed nuclei. We conclude that these differences in repeat lengths between nascent and bulk DNA was generated in vivo by changes in chromatin structure during replication, rather than by micrococcal nuclease-induced sliding of histone cores in vitro.  相似文献   

8.
9.
Unusual chromatin in human telomeres.   总被引:25,自引:5,他引:20       下载免费PDF全文
We report that human telomeres have an unusual chromatin structure characterized by diffuse micrococcal nuclease patterns. The altered chromatin manifested itself only in human telomeres that are relatively short (2 to 7 kb). In contrast, human and mouse telomeres with telomeric repeat arrays of 14 to 150 kb displayed a more canonical chromatin structure with extensive arrays of tightly packed nucleosomes. All telomeric nucleosomes showed a shorter repeat size than bulk nucleosomes, and telomeric mononucleosomal particles were found to be hypersensitive to micrococcal nuclease. However, telomeric nucleosomes were similar to bulk nucleosomes in the rate at which they sedimented through sucrose gradients. We speculate that mammalian telomeres have a bipartite structure with unusual chromatin near the telomere terminus and a more canonical nucleosomal organization in the proximal part of the telomere.  相似文献   

10.
N. Ronald Morris 《Cell》1976,8(3):357-363
The structure of chromatin from Aspergillus nidulans was studied using micrococcal nuclease and DNAase I. Limited digestion with micrococcal nuclease revealed a nucleosomal repeat of 154 base pairs for Aspergillus and 198 base pairs for rat liver. With more extensive digestion, both types of chromatin gave a similar quasi-limit product with a prominent fragment at 140 base pairs. The similarity of the two limit digests suggests that the structure of the 140 base pair nucleosome core is conserved. This implies that the difference in nucleosome repeat lengths between Aspergillus and rat liver is caused by a difference in the length of the DNA between two nucleosome cores. Digestion of Aspergillus chromatin with DNAase I produced a pattern of single-stranded fragments at intervals of 10 bases which was similar to that produced from rat liver chromatin.  相似文献   

11.
Chromatinismadeupofregularlyspacedsubunits,nucleosomes.Ineukaryoticcells,chromatinisassembledimmediatedlyafterDNAreplication,butincellfreesystems,itcanbeassembledindependentofDNAreplicationwhenexogenousDNAwasaddedtoeggoroocyteextractsofXenopuslaevis.The…  相似文献   

12.
X Y Zhang  F Fittler    W Hrz 《Nucleic acids research》1983,11(13):4287-4306
The question of nucleosome phasing on African Green Monkey (AGM) alpha-satellite DNA has been addressed by employing a new approach. Nucleosome cores were prepared from AGM nuclei with micrococcal nuclease, exonuclease III and nuclease S1. The core DNA population derived from alpha-satellite DNA containing chromatin was purified from total core DNA by denaturation of the DNA, reassociation to a low Cot value, and hydroxyapatite chromatography to separate the renatured satellite fraction. After end-labeling the termini of the alpha-satellite containing core DNA fragments were mapped by high resolution gel electrophoresis relative to known restriction sites along the 172 bp repeat unit of the satellite DNA. The results show that nucleosomes occupy eight strictly defined positions on the alpha-satellite DNA which could be determined with an accuracy of +/- 1 base pair. Approximately 35% of all nucleosomes are organized in one of these frames while the other seven registers contribute about 10% each.  相似文献   

13.
The sequence specificity of micrococcal nuclease complicates its use in experiments addressed to the still controversial issue of nucleosome phasing. In the case of alpha-satellite DNA containing chromatin from African green monkey (AGM) cells cleavage by micrococcal nuclease in the nucleus was reported to occur predominantly at only one location around position 126 of the satellite repeat unit (Musich et al. (1982) Proc. Natl. Acad. Sci. USA 79, 118-122). DNA control experiments conducted in the same study indicated the presence of many preferential cleavage sites for micrococcal nuclease on the 172 bp long alpha-satellite repeat unit. This difference was taken as evidence for a direct and simple phase relationship between the alpha-satellite DNA sequence and the position of the nucleosomes on the DNA. We have quantitatively analyzed the digestion products of the protein-free satellite monomer with micrococcal nuclease and found that 50% of all cuts occur at positions 123 and 132, 5% at position 79, and to a level of 1-3% at about 20 other positions. We also digested high molecular weight alpha-satellite DNA from AGM nuclei with micrococcal nuclease. Again cleavage occurred mostly at positions 123 and 132 of the satellite repeat unit. Thus digestion of free DNA yields results very similar to those reported by Musich et al. for the digestion of chromatin. Therefore no conclusions on a possible phase relationship can be drawn from the chromatin digestion experiments.  相似文献   

14.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

15.
16.
We have previously shown the existence of two DNA-binding sites on the globular domain of H5 (termed GH5), both of which are required for nucleosome organisation, as judged by the protection of a 166 bp chromatosome intermediate during micrococcal nuclease digestion of chromatin. This supports a model in which GH5 contacts two duplexes on the nucleosome. However, studies of a nucleosome assembled on the 5 S rRNA gene have argued against the requirement for two DNA-binding sites for chromatosome protection, which has implications for the role of linker histones. We have used this proposed difference in the requirement for a second site on the globular domain in the two models as a means of investigating whether bulk and reconstituted 5 S nucleosomes are indeed fundamentally different. GH5 protects a 166 bp chromatosome in both "bulk" and 5 S systems, and in both cases protection is abolished when all four basic residues in site II are replaced by alanine. Binding to four-way DNA junctions, which present a pair of juxtaposed duplexes, is also abolished. Single mutations of the basic residues did not abolish chromatosome protection in either system, or binding to four-way junctions, suggesting that the residues function as a cluster. Both bulk and 5 S nucleosomes thus require a functional second DNA-binding site on GH5 in order to bind properly to the nucleosome. This is likely to reflect a similar mode of binding in each case, in which two DNA duplexes are contacted in the nucleosome. There is no indication from these experiments that linker histones bind fundamentally differently to 5 S and bulk nucleosomes.  相似文献   

17.
We have used DNaseI and micrococcal nuclease sensitivity assays to determine the chromatin structures in the control regions of the Chlamydomonas reinhardtii HSP70A and RBCS2 genes. Both genes appear to be organized into nucleosome arrays, which exhibit shorter nucleosome repeat lengths than bulk chromatin. In HSP70A we have identified up to four confined DNaseI hypersensitive sites, three of them localize to the promoter region, a fourth one to the fourth intron. Three hypersensitive sites map close to putative heat shock elements, one close to a CCAAT-box. All hypersensitive sites are located to internucleosomal linkers. Alternative nucleosome positions at half-nucleosomal phasing were constitutively detected in the HSP70A promoter region, indicating local chromatin remodelling. Upon heat shock, dramatic changes in the nucleosome structure of HSP70A were detected that particularly affected the promoter, but also a region within the fourth intron. In contrast, light induction entailed no change in HSP70A chromatin. In the RBCS2 control region we identified a strong DNaseI hypersensitive site that maps close to a CCAAT-box. This site forms the boundary of a nucleosome array with a region of ~700 bp apparently devoid of nucleosomes. This study demonstrates that chromatin structure may be determined readily at fairly high resolution in Chlamydomonas, suggesting this organism as a well-suited model for studying the role of chromatin structure on gene expression in photosynthetic eukaryotes.  相似文献   

18.
Rat neuronal identifier (ID) elements are located in chromatin regions that are organized in nucleosomal structures in both neuronal and non-neuronal cells. A subpopulation of ID sequences in chromatin of liver and kidney cells are relatively resistant to micrococcal nuclease digestion and are organized in nucleosomes exhibiting an atypically short repeat length. Other repetitive elements do not show this organization.  相似文献   

19.
20.
Positioning of nucleosomes in satellite I-containing chromatin of rat liver   总被引:3,自引:0,他引:3  
The location of nucleosomes on rat satellite I DNA has been investigated using a new approach. Nucleosome cores were prepared from rat liver nuclei with micrococcal nuclease, exonuclease III and nucleases S1. From the total population of core DNA fragments the satellite-containing fragments were isolated by molecular cloning and the complete sequence of 50 clones was determined. The location of nucleosomes along the satellite sequence was found to be non-random. Our results show that nucleosomes occupy a number of positions on satellite I DNA. About 35 to 50% of all nucleosomes are positioned in two corresponding major sites, the remainder in about 16 less preferred sites. The major nucleosome positions are apparently strictly defined with the precision of a single base-pair. These results were confirmed by other approaches, including restriction nuclease digestion experiments. There are good indications of a defined long-range organization of the satellite chromatin fiber in two or more oligonucleosomal arrays with distinct nucleosome configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号