首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Inducible cAMP early repressor (ICER) is an important mediator of cAMP antiproliferative activity that acts as a putative tumor suppressor gene product. In this study, we examined the regulation of ICER protein by phosphorylation and ubiquitination in human choriocarcinoma JEG-3 and mouse pituitary AtT20 cells. We found that cAMP stabilized ICER protein by inhibiting the mitogen-activated protein kinase (MAPK) cascade. Activation of the MAPK pathway increased ICER phosphorylation. ICER phosphorylation was abrogated by inhibition of the MAPK pathway either by cAMP or directly by the MAPK inhibitor PD098059. The MAPKs extracellular signal-regulated kinases 1 and 2 physically interact with ICER and mediated the phosphorylation of ICER on a critical serine residue (Ser-41). A mutant form of ICER in which Ser-41 was substituted by alanine had a half-life 4-5 h longer than its wild-type counterpart. This alteration in stability was due to the inability of the Ser-41-mutant ICER to be efficiently ubiquitinated and degraded via the ubiquitin-proteasome pathway. These results present a novel cell signaling cross-talk mechanism at the cell nucleus between the MAPK and cAMP pathways, whereby MAPK targets a repressor of the cAMP-dependent gene expression for ubiquitination and proteasomal degradation.  相似文献   

2.
Suppression subtractive hybridization library was generated by comparison of cDNA populations isolated from peripheral leukocytes of pre- and post-immunized tilapia. One cDNA sequence encoding complete inducible cAMP early repressor was obtained from the library. The sequence was characterized by the presence of the basic structure of ICER IIγ. Expression of ICER was in the tissues of four types of tilapia was decreased after infection with Streptococcus. After immunization, expression of ICER was initially decreased and then increased after 7 days. In addition, the order for the overall expression of ICER gene after infection and the increases of ICER expression later after immunization in these four types of tilapia was positively correlated to the disease resistance and productivity of these four species of tilapia. Our results provided molecular mechanisms for the different disease resistance capability in different species of tilapia. In addition, our results also provided reference molecular marker for breeding disease resistant tilapia, cAMP responsive element modulator.  相似文献   

3.
4.
5.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

6.
7.
8.
9.
10.
The function of vitamin D receptor in vitamin D action   总被引:5,自引:0,他引:5  
  相似文献   

11.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of phorbol esters and gonadotropin-releasing hormone (GnRH) in normal and protein kinase C (Ca2+/phospholipid-dependent enzyme)-depleted pituitary cell cultures. LH secretory responses of normal pituitary cells to GnRH were reduced but not abolished in Ca2+-deficient medium, consistent with the existence of extracellular Ca2+-dependent and -independent components of GnRH action. Both of these components could be elicited by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). The LH secretory responses to TPA and GnRH were additive only at low doses and converged to a common maximum at high concentrations of the agonists in the presence or absence of extracellular Ca2+. The release of stored LH by GnRH and TPA was accompanied by secretion of newly synthesized LH from 2 to 5 h during stimulation by either of the agonists. LH synthesis was increased in a progressive and dose-dependent manner by GnRH and TPA, and the ratio between newly synthesized and released hormone was near 1:2. TPA caused rapid and complete translocation of cytosolic protein kinase C to the particulate fraction of pituitary cells, followed by a progressive decrease in total enzyme content to approximately 10% after 6 h. Partial recovery of the cytosolic enzyme (to 20%) occurred after washing and reincubation for 15 h. Such kinase C-depleted cells showed prominent, dose-dependent reductions in the actions of GnRH and TPA on LH release and synthesis in both normal and Ca2+-deficient media. These observations support the hypothesis that protein kinase C participates in LH biosynthesis and secretion in pituitary gonadotrophs and is involved in the actions of GnRH upon these processes.  相似文献   

12.
13.
14.
We investigated the action of vanadate on protein phosphorylation in microvessels isolated from rat brain. We found that a stimulation of protein phosphorylation from 32P-ATP occurs, in the presence of different concentrations of vanadate, 10(-3) M being the most effective dose. This action was time-dependent, and it was more evident after 60 s of treatment. The contribution of ATPase inhibition caused by vanadate appears to be negligible. In addition a stimulation of cAMP-dependent protein kinase activity was observed. The pattern of protein phosphorylation showed that exposure to 10(-3) M vanadate resulted in a nonspecific stimulation of protein phosphorylation concomitantly with a selective inhibition of the 55 KDa protein phosphorylation. The nature of this protein is also discussed.  相似文献   

15.
We previously demonstrated that the 1alpha,25-dihydroxyvitamin D(3) receptor (VDR) interacts with the constitutive heat shock protein, hsc70 in vitro, and with DnaK (Biochem. Biophys. Res. Commun. 260, 446-452, 1999). The biological significance of VDR-heat shock protein interactions, however, is unknown. To examine the role of such interactions in eukaryotic cells, we heterologously expressed VDR and RXRalpha together with a vitamin D-responsive reporter system in Saccharomyces cerevisiae and examined the consequences of heat shock protein 70 gene (SSA) deletion in these cells. We show that heterologously expressed VDR associates with the yeast cytosolic hsp70 protein, Ssa1p. Deletion of the SSA2, SSA3, and SSA4 genes and reduction of Ssa1p activity, reduces the intracellular concentrations of the VDR and its heterodimeric partner, RXRalpha and reduces the activity of a vitamin D-dependent gene. Hsp70-like chaperone proteins play a role in controlling concentrations of the VDR within the cell.  相似文献   

16.
The abundance of 1,25-dihydroxyvitamin D3 receptors (VDR) in cultured cells has been shown to vary in direct relation to the rate of cell proliferation. This study examines the question of whether the growth-factor mediated up-regulation of VDR is due to direct modulation of VDR gene expression or is secondary to the stimulation of cell cycle events. Mitogenic agents, such as basic fibroblast growth factor and phorbol esters, were found to cause significant decreases in VDR abundance, while substantially stimulating proliferation of NIH-3T3 cells. Potent phorbol esters, such as phorbol myristate acetate (PMA) and phorbol-12,13-dibutyrate, whose biological actions have been shown to be mediated through the activation of protein kinase-C, down-regulated VDR in a time- and dose-dependent manner. An inactive phorbol ester, 4 alpha-phorbol-12,13-didecanoate, which does not activate protein kinase-C, did not alter VDR levels. Desensitization of protein kinase-C by prolonged exposure of cells to phorbol esters eliminated the PMA-mediated down-regulation of VDR. Staurosporine, an inhibitor of protein kinase-C, blocked the actions of PMA. Oleoyl acetyl glycerol, a synthetic diacyl glycerol, and A23187, a calcium ionophore, were both able to suppress VDR abundance alone and were additive in combination. The results suggest that activation of the protein kinase-C pathway and elevation of intracellular Ca2+ lead to significant down-regulation of VDR. The inhibitory effect of PMA appears to be exerted at the level of VDR mRNA expression. Northern blot analysis revealed significant decreases in steady state levels of VDR mRNA species that qualitatively corresponded to the decrease in VDR protein concentration seen on a Western blot.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Immediate early genes (IEGs) are induced by different signaling pathways. It has been proposed that D2 dopamine receptor blockade induces IEG expression through activation of protein kinase A (PKA), although few studies have examined this issue in vivo. We infused the PKA inhibitor H-89 into the striatum of male rats, followed 30 min later by systemic administration of eticlopride. Eticlopride-induced c-fos and zif268 mRNA expression in striatum was not blocked by H-89. In addition, eticlopride did not produce measurable levels of PKA activity in striatum, whereas the cAMP activator Sp-8-Br-cAMPs increased levels of activated PKA. Neither the adenosine A2a receptor agonist CGS 21680 nor the phosphodiesterase-4 inhibitor rolipram, each of which should increase PKA activation, potentiated eticlopride-induced IEG expression. To test whether other signaling pathways are involved in eticlopride-mediated gene induction, we also infused inhibitors of the mitogen-activated and calcium/calmodulin-dependent protein kinases into animals and then treated them with eticlopride. The data suggest that eticlopride-induced IEG expression is not solely dependent on these kinases either. These data suggest that PKA activation may not be necessary for induction of IEGs by D2 dopamine receptor antagonists and that other intracellular signaling pathways may be involved.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号