共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. 总被引:6,自引:4,他引:6
下载免费PDF全文

To study the function of the envelope glycoprotein gH of pseudorabies virus, a gH null mutant was constructed. A premature translation termination codon was introduced in the gH gene by linker insertion mutagenesis, and a mutant virus was rescued by using a cell line that expresses the wild-type protein. Mutant virus isolated from complementing cells was unable to form plaques on noncomplementing cells, indicating that gH is essential in the life cycle of the virus. Immunological staining and electron microscopy showed that the mutant virus produced noninfectious progeny and was unable to spread from infected to uninfected cells by cell-cell fusion. Thus, similar to gH of herpes simplex virus, gH of pseudorabies virus is required for entry and cell-to-cell spread. 相似文献
2.
Yamagishi Y Sadaoka T Yoshii H Somboonthum P Imazawa T Nagaike K Ozono K Yamanishi K Mori Y 《Journal of virology》2008,82(2):795-804
Although envelope glycoprotein M (gM) is highly conserved among herpesviruses, the varicella-zoster virus (VZV) gM homolog has never been investigated. Here we characterized the VZV gM homolog and analyzed its function in VZV-infected cells. The VZV gM homolog was expressed on virions as a glycoprotein modified with a complex N-linked oligosaccharide and localized mainly to the Golgi apparatus and the trans-Golgi network in infected cells. To analyze its function, a gM deletion mutant was generated using the bacterial artificial chromosome system in Escherichia coli, and the virus was reconstituted in MRC-5 cells. VZV is highly cell associated, and infection proceeds mostly by cell-to-cell spread. Compared with wild-type VZV, the gM deletion mutant showed a 90% reduction in plaque size and 50% of the cell-to-cell spread in MRC-5 cells. The analysis of infected cells by electron microscopy revealed numerous aberrant vacuoles containing electron-dense materials in cells infected with the deletion mutant virus but not in those infected with wild-type virus. However, enveloped immature particles termed L particles were found at the same level on the surfaces of cells infected with either type of virus, indicating that envelopment without a capsid might not be impaired. These results showed that VZV gM is important for efficient cell-to-cell virus spread in cell culture, although it is not essential for virus growth. 相似文献
3.
Envelope glycoprotein gp50 of pseudorabies virus is essential for virus entry but is not required for viral spread in mice. 总被引:4,自引:12,他引:4
下载免费PDF全文

Phenotypically complemented pseudorabies virus gp50 null mutants are able to produce plaques on noncomplementing cell lines despite the fact that progeny virions are noninfectious. To determine whether gp50 null mutants and gp50+gp63 null mutants are also able to replicate and spread in animals, mice were infected subcutaneously or intraperitoneally. Surprisingly, both gp50 mutants and gp50+gp63 double mutants proved to be lethal for mice. In comparison with the wild-type virus, gp50 mutants were still highly virulent, whereas the virulence of gp50+gp63 mutants was significantly reduced. Severe signs of neurological disorders, notably pruritus, were apparent in animals infected with the wild-type virus or a gp50 mutant but were much less pronounced in animals infected with a gp50+gp63 or gp63 mutant. Immunohistochemical examination of infected animals showed that all viruses were able to reach, and replicate in, the brain. Examination of visceral organs of intraperitoneally infected animals showed that viral antigen was predominantly present in peripheral nerves, suggesting that the viruses reached the central nervous system by means of retrograde axonal transport. Infectious virus could not be recovered from the brains and organs of animals infected with gp50 or gp50+gp63 mutants, indicating that progeny virions produced in vivo are noninfectious. Virions that lacked gp50 in their envelopes, and a phenotypically complemented pseudorabies virus gII mutant (which is unable to produce plaques in tissue culture cells), proved to be nonvirulent for mice. Together, these results show that gp50 is required for the primary infection but not for subsequent replication and viral spread in vivo. These results furthermore indicate that transsynaptic transport of the virus is independent of gp50. Since progeny virions produced by gp50 mutants are noninfectious, they are unable to spread from one animal to another. Therefore, such mutants may be used for the development of a new generation of safer (carrier) vaccines. 相似文献
4.
Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic tail. 总被引:3,自引:16,他引:3
下载免费PDF全文

Varicella-zoster virus (VZV) encodes a cell surface Fc receptor, glycoprotein gE. VZV gE has previously been shown to display several features common to nonviral cell surface receptors. Most recently, VZV gE was reported to be tyrosine phosphorylated on a dimeric form (J. K. Olson, G. A. Bishop, and C. Grose, J. Virol. 71:110-119, 1997). Thereafter, attention focused on the ability of VZV gE to undergo receptor-mediated endocytosis. The current transient transfection studies demonstrated by confocal microscopy and internalization assays that VZV gE was endocytosed when expressed in HeLa cells. Endocytosis of gE was shown to be dependent on clathrin-coated vesicle formation within the cells. Subsequent colocalization studies showed that endocytosis of VZV gE closely mimicked endocytosis of the transferrin receptor. The gE cytoplasmic tail and more specifically tyrosine residue 582 were determined by mutagenesis studies to be important for efficient internalization of the protein; this tyrosine residue is part of a conserved YXXL motif. The amount of gE internalized at any given time reached a steady state of 32%. In addition, like the transferrin receptor, internalized gE recycled to the cell surface. The finding of gE endocytosis provided insight into earlier documentation of gE serine/threonine and tyrosine phosphorylation, since these phosphorylation events may serve as sorting signals for internalized receptors. Taken together with the previous discovery that both human and simian immunodeficiency virus envelope proteins can undergo endocytosis, the gE findings suggest that endocytosis of envelope components may be a posttranslational regulatory mechanism among divergent families of enveloped viruses. 相似文献
5.
A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen 总被引:3,自引:0,他引:3
下载免费PDF全文

Rajasekaran SA Anilkumar G Oshima E Bowie JU Liu H Heston W Bander NH Rajasekaran AK 《Molecular biology of the cell》2003,14(12):4835-4845
Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the alpha-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative micro2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif. 相似文献
6.
Internalization of pseudorabies virus glycoprotein B is mediated by an interaction between the YQRL motif in its cytoplasmic domain and the clathrin-associated AP-2 adaptor complex
下载免费PDF全文

The cytoplasmic domain of pseudorabies virus (PRV) glycoprotein B (gB) contains three putative internalization motifs. Previously, we demonstrated that the tyrosine-based YQRL motif at positions 902 to 905, but not the YMSI motif at positions 864 to 867 or the LL doublet at positions 887 and 888, is required for correct functioning of gB during antibody-mediated internalization of PRV cell surface-bound glycoproteins. In the present study, we demonstrate that the YQRL motif is also crucial to allow spontaneous internalization of PRV gB, and thus, that spontaneous and antibody-mediated internalizations of PRV gB occur through closely related mechanisms. Furthermore, we found that PRV gB colocalizes with the cellular clathrin-associated AP-2 adaptor complex and that this colocalization depends on the YQRL motif. In addition, by coimmunoprecipitation assays, we found that during both spontaneous and antibody-dependent internalization, PRV gB physically interacts with AP-2, and that efficient interaction between gB and AP-2 required an intact YQRL motif. Collectively, these findings demonstrate for the first time that during internalization of an alphaherpesvirus envelope protein, i.e., PRV gB, a specific amino acid sequence in the cytoplasmic tail of the protein interacts with AP-2 and may constitute a common AP-2-mediated mechanism of internalization of alphaherpesvirus envelope proteins. 相似文献
7.
A functional YNKI motif in the short cytoplasmic tail of varicella-zoster virus glycoprotein gH mediates clathrin-dependent and antibody-independent endocytosis 总被引:1,自引:0,他引:1
下载免费PDF全文

The trafficking of varicella-zoster virus (VZV) gH was investigated under both infection and transfection conditions. In initial endocytosis assays performed in infected cells, the three glycoproteins gE, gI, and gB served as positive controls for internalization from the plasma membrane. Subsequently, we discovered that gH in VZV-infected cells was also internalized and followed a similar trafficking pattern. This observation was unexpected because all herpesvirus gH homologues have short endodomains not known to contain trafficking motifs. Further investigation demonstrated that VZV gH, when expressed alone with its chaperone gL, was capable of endocytosis in a clathrin-dependent manner, independent of gE, gI, or gB. Upon inspection of the short gH cytoplasmic tail, we discovered a putative tyrosine-based endocytosis motif (YNKI). When the tyrosine was replaced with an alanine, endocytosis of gH was blocked. Utilizing an endocytosis assay dependent on biotin labeling, we further documented that endocytosis of VZV gH was antibody independent. In control experiments, we showed that gE, gI, and gB also internalized in an antibody-independent manner. Alignment analysis of the VZV gH cytoplasmic tail to other herpesvirus gH homologues revealed two important findings: (i) herpes simplex virus type 1 and 2 homologues lacked an endocytosis motif, while all other alphaherpesvirus gH homologues contained a potential motif, and (ii) the VZV gH and simian varicella virus gH cytoplasmic tails were likely longer in length (18 amino acids) than predicted in the original sequence analyses (12 and 16 amino acids, respectively). The longer tails provided the proper context for a functional endocytosis motif. 相似文献
8.
Role of the cytoplasmic domains of viral glycoproteins in antibody-induced cell surface mobility. 总被引:5,自引:1,他引:5
下载免费PDF全文

We have investigated the role of the cytoplasmic domains of the influenza virus hemagglutinin (HA) and the parainfluenza virus type 3 (PI3) fusion (F) glycoproteins as a determinant of their ability to undergo antibody-induced redistribution on plasma membranes. The viral envelope genes were truncated in their cytoplasmic domains by using oligonucleotide-directed mutagenesis and expressed by using recombinant vaccinia viruses. In HeLa cells, the truncated HA (HAt), like the full-length HA, did not cap in response to specific antibody. In CV-1 cells, HAt showed patchy surface immunofluorescence with few caps, whereas full-length HA exhibited capping in many cells in response to bivalent antibody. Quantitation of cap formation indicated a sevenfold decrease in the frequency of capping of HAt in comparison with full-length HA. Similarly, truncated F also exhibited a significant decrease in cap formation in comparison with full-length F. These results indicate that the ability of influenza virus HA and PI3 F to undergo redistribution in response to bivalent antibody has been altered by truncation of the viral glycoproteins and suggest that capping may involve interactions between the cytoplasmic domain of the viral glycoproteins and host cell components. 相似文献
9.
A tyrosine-based motif in the cytoplasmic domain of the alphavirus envelope protein is essential for budding. 总被引:14,自引:4,他引:14
下载免费PDF全文

The budding of enveloped viruses from cellular membranes is believed to be dependent on the specific interaction between transmembrane spike proteins and cytoplasmic core components of the virus. We found that the cytoplasmic domain of the E2 transmembrane spike glycoprotein of Semliki Forest virus contains two essential determinants which are absolutely needed for budding. The first constitutes a single tyrosine residue in the context of a direct pentapeptide repeat. The tyrosine could only partially be substituted for other residues with aromatic or bulky hydrophobic side chains, although these immediately reverted to the original genotype. The second determinant involves palmitylated cysteine residues flanking the tyrosine repeat motif. The function of these is probably to anchor the tail against the inner surface of the membrane so that the tyrosine-containing motif is properly presented to the nucleocapsid. This is the first example where a membrane virus employs a tyrosine signal for the selective incorporation of spike proteins into budding structures. 相似文献
10.
The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging
下载免费PDF全文

The M2 integral membrane protein encoded by influenza A virus possesses an ion channel activity that is required for efficient virus entry into host cells. The role of the M2 protein cytoplasmic tail in virus replication was examined by generating influenza A viruses encoding M2 proteins with truncated C termini. Deletion of 28 amino acids (M2Stop70) resulted in a virus that produced fourfold-fewer particles but >1,000-fold-fewer infectious particles than wild-type virus. Expression of the full-length M2 protein in trans restored the replication of the M2 truncated virus. Although the M2Stop70 virus particles were similar to wild-type virus in morphology, the M2Stop70 virions contained reduced amounts of viral nucleoprotein and genomic RNA, indicating a defect in vRNP packaging. The data presented indicate the M2 cytoplasmic tail plays a role in infectious virus production by coordinating the efficient packaging of genome segments into influenza virus particles. 相似文献
11.
While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread. 相似文献
12.
A tyrosine motif in the cytoplasmic domain of mason-pfizer monkey virus is essential for the incorporation of glycoprotein into virions
下载免费PDF全文

Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site. 相似文献
13.
A cellular function is required for pseudorabies virus envelope glycoprotein processing and virus egress.
下载免费PDF全文

The mouse L-cell mutant gro29 is defective for egress of herpes simplex virus type 1 (HSV-1) virions and is significantly reduced in HSV-1 glycoprotein export (B. W. Banfield and F. Tufaro, J. Virol. 64:5716-5729, 1990). In this report, we demonstrate that pseudorabies virus (PRV), a distantly related alphaherpesvirus, shows a distinctive set of defects after infection of gro29 cells. Specifically, we identify defects in the rate and extent of viral glycoprotein export, infectious particle formation, plaque formation, and virus egress. The initial rate of viral glycoprotein synthesis was unaffected in gro29 cells, but the extent of export from the endoplasmic reticulum to the Golgi apparatus was impaired and export through the Golgi apparatus became essentially blocked late in infection. Moreover, by using a secreted variant of a viral membrane protein, we found that export from the Golgi apparatus out of the cell was also defective in gro29 cells. PRV does not form plaques on gro29 monolayers. A low level of infectious virus is formed and released early after infection, but further virus egress is blocked. Taken together, these observations suggest that the gro29 phenotype involves either multiple proteins or a single protein used at multiple steps in viral glycoprotein export and virus egress from cells. Moreover, this host cell protein is required by both HSV and PRV for efficient propagation in infected cells. 相似文献
14.
Herpes simplex virus type-1 (HSV-1) is a common human pathogen that relies heavily on cell-to-cell spread for establishing a lifelong latent infection. Molecular aspects of HSV-1 entry into host cells have been well studied; however, the molecular details of the spread of the virus from cell-to-cell remain poorly understood. In the past, the role of heparan sulfate proteoglycans (HSPG) during HSV-1 infection has focused solely on the role of HS chains as an attachment receptor for the virus, while the core protein has been assumed to perform a passive role of only carrying the HS chains. Likewise, very little is known about the involvement of any specific HSPGs in HSV-1 lifecycle. Here we demonstrate that a HSPG, syndecan-1, plays an important role in HSV-1 induced membrane fusion and cell-to-cell spread. Interestingly, the functions of syndecan-1 in fusion and spread are independent of the presence of HS on the core protein. Using a mutant CHO-K1 cell line that lacks all glycosaminoglycans (GAGs) on its surface (CHO-745) we demonstrate that the core protein of syndecan-1 possesses the ability to modulate membrane fusion and viral spread. Altogether, we identify a new role for syndecan-1 in HSV-1 pathogenesis and demonstrate HS-independent functions of its core protein in viral spread. 相似文献
15.
The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. 总被引:2,自引:5,他引:2
下载免费PDF全文

The mechanisms allowing vaccinia virus to spread from cell to cell are incompletely understood. The A34R gene of vaccinia virus encodes a glycoprotein that is localized in the outer membranes of extracellular virions. The small-plaque phenotype of an A34R deletion mutant was similar to that of mutants with deletions in other envelope genes that fail to produce extracellular vaccinia virions. Transmission electron microscopy, however, revealed that the A34R mutant produced numerous extracellular particles that were labeled with antibodies to other outer-envelope proteins and with protein A-colloidal gold. Fluorescence and scanning electron microscopy indicated that expression of the A34R protein was necessary for detection of vaccinia virus-induced actin tails, which provide motility to the intracellular enveloped form of vaccinia virus, and of virus-tipped specialized microvilli that project from the cell. The ability of vaccinia virus-infected cells to form syncytia after a brief exposure to a pH below 6, known as fusion from within, failed to occur in the absence of expression of the A34R protein; nevertheless, purified A34R- virions were capable of mediating low-pH-induced fusion from without. The present study provides genetic and microscopic evidence for the involvement of a specific viral protein in the formation or stability of actin-containing microvilli and for a role of these structures in cell-to-cell spread rather than in formation of extracellular virions. 相似文献
16.
Beitia Ortiz de Zarate I Cantero-Aguilar L Longo M Berlioz-Torrent C Rozenberg F 《Journal of virology》2007,81(24):13889-13903
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion. 相似文献
17.
Insertions in the gG gene of pseudorabies virus reduce expression of the upstream Us3 protein and inhibit cell-to-cell spread of virus infection 总被引:3,自引:0,他引:3
The alphaherpesvirus Us4 gene encodes glycoprotein G (gG), which is conserved in most viruses of the alphaherpesvirus subfamily. In the swine pathogen pseudorabies virus (PRV), mutant viruses with internal deletions and insertions in the gG gene have shown no discernible phenotypes. We report that insertions in the gG locus of the attenuated PRV strain Bartha show reduced virulence in vivo and are defective in their ability to spread from cell to cell in a cell-type-specific manner. Similar insertions in the gG locus of the wild-type PRV strain Becker had no effect on the ability of virus infection to spread between cells. Insertions in the gG locus of the virulent NIA-3 strain gave results similar to those found with the Bartha strain. To examine the role of gG in cell-to-cell spread, a nonsense mutation in the gG signal sequence was constructed and crossed into the Bartha strain. This mutant, PRV157, failed to express gG yet had cell-to-cell spread properties indistinguishable from those of the parental Bartha strain. These data indicated that, while insertions in the gG locus result in decreased cell-to-cell spread, the phenotype was not due to loss of gG expression as first predicted. Analysis of gene expression upstream and downstream of gG revealed that expression of the upstream Us3 protein is reduced by insertion of lacZ or egfp at the gG locus. By contrast, expression of the gene immediately downstream of gG, Us6, which encodes glycoprotein gD, was not affected by insertions in gG. These data indicate that DNA insertions in gG have polar effects and suggest that the serine/threonine kinase encoded by the Us3 gene, and not gG, functions in the spread of viral infection between cells. 相似文献
18.
The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging
下载免费PDF全文

We have analyzed the importance of specific amino acids in the cytoplasmic tail of the glycoprotein G(N) for packaging of ribonucleoproteins (RNPs) into virus-like particles (VLPs) of Uukuniemi virus (UUK virus), a member of the Bunyaviridae family. In order to study packaging, we added the G(N)/G(C) glycoprotein precursor (p110) to a polymerase I-driven minigenome rescue system to generate VLPs that are released into the supernatant. These particles can infect new cells, and reporter gene expression can be detected. To determine the role of UUK virus glycoproteins in RNP packaging, we performed an alanine scan of the glycoprotein G(N) cytoplasmic tail (amino acids 1 to 81). First, we discovered three regions in the tail (amino acids 21 to 25, 46 to 50, and 71 to 81) which are important for minigenome transfer by VLPs. Further mutational analysis identified four amino acids that were important for RNP packaging. These amino acids are essential for the binding of nucleoproteins and RNPs to the glycoprotein without affecting the morphology of the particles. No segment-specific interactions between the RNA and the cytoplasmic tail could be observed. We propose that VLP systems are useful tools for analyzing protein-protein interactions important for packaging of viral genome segments, assembly, and budding of other members of the Bunyaviridae family. 相似文献
19.
Efficient export of the vesicular stomatitis virus G protein from the endoplasmic reticulum requires a signal in the cytoplasmic tail that includes both tyrosine-based and di-acidic motifs
下载免费PDF全文

The vesicular stomatitis virus (VSV) G protein is a model transmembrane glycoprotein that has been extensively used to study the exocytotic pathway. A signal in the cytoplasmic tail of VSV G (DxE or Asp-x-Glu, where x is any amino acid) was recently proposed to mediate efficient export of the protein from the endoplasmic reticulum (ER). In this study, we show that the DxE motif only partially accounts for efficient ER exit of VSV G. We have identified a six-amino-acid signal, which includes the previously identified Asp and Glu residues, that is required for efficient exit of VSV G from the ER. This six-residue signal also includes the targeting sequence YxxO (where x is any amino acid and O is a bulky, hydrophobic residue) implicated in several different sorting pathways. The only defect in VSV G proteins with mutations in the six-residue signal is slow exit from the ER; folding and oligomerization in the ER are normal, and the mutants eventually reach the plasma membrane. Addition of this six-residue motif to an inefficiently transported reporter protein is sufficient to confer an enhanced ER export rate. The signal we have identified is highly conserved among divergent VSV G proteins, and we suggest this reflects the importance of this motif in the evolution of VSV G as a proficient exocytic protein. 相似文献
20.
The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread: evidence for gE/gI receptors
下载免费PDF全文

Polcicova K Goldsmith K Rainish BL Wisner TW Johnson DC 《Journal of virology》2005,79(18):11990-12001
Herpes simplex virus (HSV) spreads rapidly and efficiently within epithelial and neuronal tissues. The HSV glycoprotein heterodimer gE/gI plays a critical role in promoting cell-to-cell spread but does not obviously function during entry of extracellular virus into cells. Thus, gE/gI is an important molecular handle on the poorly understood process of cell-to-cell spread. There was previous evidence that the large extracellular (ET) domains of gE/gI might be important in cell-to-cell spread. First, gE/gI extensively accumulates at cell junctions, consistent with being tethered there. Second, expression of gE/gI in trans interfered with HSV spread between epithelial cells. To directly test whether the gE ET domain was necessary for gE/gI to promote virus spread, a panel of gE mutants with small insertions in the ET domain was constructed. Cell-to-cell spread was reduced when insertions were made within either of two regions, residues 256 to 291 or 348 to 380. There was a strong correlation between loss of cell-to-cell spread function and binding of immunoglobulin. gE ET domain mutants 277, 291, and 348 bound gI, produced mature forms of gE that reached the cell surface, and were incorporated into virions yet produced plaques similar to gE null mutants. Moreover, all three mutants were highly restricted in spread within the corneal epithelium, in the case of mutant 277 to only 4 to 6% of the number of cells compared with wild-type HSV. Therefore, the ET domain of gE is indispensable for efficient cell-to-cell spread. These observations are consistent with our working hypothesis that gE/gI can bind extracellular ligands, so-called gE/gI receptors that are concentrated at epithelial cell junctions. This fits with similarities in structure and function of gE/gI and gD, which is a receptor binding protein. 相似文献