首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a neuron–astrocyte adhesion contact the ionic current due to the opening of voltage-dependent potassium channels has to flow along a narrow intercellular cleft, generating there an extracellular voltage. This voltage might be large enough to affect significantly the dependence of channel gating from the intracellular voltage. In order to test this hypothesis, we considered a Xenopus oocyte expressing voltage-dependent potassium channels adhering to a layer of silicon oxide as a simplified model of cell–cell adhesion; here the cell membrane and silicon oxide are separated by a narrow cleft and form a junction of circular shape. We measured directly the extracellular voltage along the diameter of the cleft and investigated its effect on channel gating using a linear array of field effect transistors integrated in the silicon substrate. On this experimental basis we demonstrated that the voltage dependence of potassium channels is strongly affected by adhesion, as can be predicted using a model of a two-dimensional cable and electrodiffusion theory. Computations based on the model showed that along a neuron–astrocyte adhesion contact the opening of voltage-dependent Kv2.1 potassium channels is significantly reduced with respect to identical channels facing an open extracellular space.  相似文献   

2.
Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na(+) and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl(-) efflux through chloride channels and Na(+) influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.  相似文献   

3.
In regions of focal adhesion, cells adhere to a substrate through the interaction of extracellular matrix proteins and transmembrane integrins which are coupled to the cell skeleton. It is generally assumed that the plasma membrane is brought to close proximity to the substrate there. We used the novel method of fluorescence interference contrast (FLIC) microscopy to measure the distance of the plasma membrane of GD25 fibroblasts on silica coated with fibronectin. We correlated the distance map with the distribution of vinculin tagged with green fluorescent protein. We found that the major part of the membrane was separated by 50 nm from the substrate. With respect to this plateau, we found spots of upward deformation and of close adhesion as well as a general ruffling of the membrane. There was no correlation between the areas of close adhesion and the distribution of vinculin. We conclude that focal adhesion does not imply a close attachment of membrane and substrate.  相似文献   

4.
For many cell types, growth, differentiation, and motility are dependent on receptor-mediated adhesion to ligand-coated surfaces. Focal contacts are strong, specialized, adhesive connections between cell and substrate in which receptors aggregate and connect extracellular ligand to intracellular cytoskeletal molecules. In this paper, we present a mathematical model to examine how focal contact formation affects cellular adhesive strength. To calculate adhesive strength with and without focal contacts, we use a one-dimensional tape peeling analysis to determine the critical tension necessary to peel the membrane. Receptor-ligand bonds are modeled as adhesive springs. In the absence of focal contacts, we derive analytic expressions for the critical tension at low and high ligand densities and show how membrane morphology affects adhesion. Then, focal contacts are modeled as cytoplasmic nucleation centers which bind adhesion receptors. The extent of adhesive strengthening upon focal contact formation depends on the elastic rigidity of the cytoskeletal connections, which determines the structural integrity of the focal contact itself. We consider two limits to this elasticity, very weak and rigid. Rigid cytoskeletal connections give much greater attachment strengths. The dependence of attachment strength on measurable model parameters is quite different in these two limits, which suggests focal contact structure might be deduced from properly performed adhesion experiments. Finally, we compare our model to the adhesive strengthening response reported for glioma cell adhesion to fibronectin (Lotz et al., 1989. J. Cell Biol. 109:1795-1805). Our model successfully predicts the observed detachment forces at 4 degrees C and yields values for the number of fibronectin receptors per glioma cell and the density of cytoskeletal connection molecules (talin) involved in receptor clusters which are consistent with measurements for other cell types. Comparison of the model with data at 37 degrees C suggests that while cytoskeletal cross-linking and clustering of fibronectin receptors significantly increases adhesion strength, specific glioma cell-substratum attachment sites possess little mechanical rigidity and detach through a peeling mechanism, consistent with the view that these sites of < or = 15 nm cell-substrate separation are precursors to fully formed, elastically rigid focal contacts.  相似文献   

5.
应用牵张刺激培养细胞的模型,观察原原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响,探讨细胞外间质-融洽纱受体在超负荷心肌肥大的跨膜信号传导机制中的作用。发现,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后,胶原、纤维连接蛋白基质组心肌细胞的^3H-亮氨酸掺入率和心肌细胞表面积均显著大于对照组,而层粘连素组无显著变化;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺  相似文献   

6.
应用牵张刺激培养细胞的模型 ,观察胶原、纤维连接蛋白、层粘连素对牵张刺激心肌细胞肥大的影响 ,探讨细胞外间质 -整合素受体在超负荷心肌肥大的跨膜信号传导机制中的作用。结果发现 ,胶原、纤维连接蛋白、层粘连素明显有助于培养心肌细胞的贴壁、伸展。牵张刺激后 ,胶原、纤维连接蛋白基质组心肌细胞的 3H -亮氨酸掺入率和心肌细胞表面积均显著大于对照组 ,而层粘连素组无显著变化 ;可溶性纤维连接蛋白、RGD肽均可显著抑制牵张刺激诱导的培养心肌细胞 (胶原为粘附基质 )的3H -亮氨酸掺入率升高和心肌细胞表面积增大 ,而层粘连素无明显作用。结果表明 ,特异的细胞外间质 -整合素在超负荷心肌肥大机制中发挥了跨膜信号传导作用。  相似文献   

7.
《The Journal of cell biology》1989,109(4):1795-1805
Cell-substratum adhesion strengths have been quantified using fibroblasts and glioma cells binding to two extracellular matrix proteins, fibronectin and tenascin. A centrifugal force-based adhesion assay was used for the adhesive strength measurements, and the corresponding morphology of the adhesions was visualized by interference reflection microscopy. The initial adhesions as measured at 4 degrees C were on the order of 10(-5)dynes/cell and did not involve the cytoskeleton. Adhesion to fibronectin after 15 min at 37 degrees C were more than an order of magnitude stronger; the strengthening response required cytoskeletal involvement. By contrast to the marked strengthening of adhesion to FN, adhesion to TN was unchanged or weakened after 15 min at 37 degrees C. The absolute strength of adhesion achieved varied according to protein and cell type. When a mixed substratum of fibronectin and tenascin was tested, the presence of tenascin was found to reduce the level of the strengthening of cell adhesion normally observed at 37 degrees C on a substratum of fibronectin alone. Parallel analysis of corresponding interference reflection micrographs showed that differences in the area of cell surface within 10-15 nm of the substratum correlated closely with each of the changes in adhesion observed: after incubation for 15 min on fibronectin at 37 degrees C, glioma cells increased their surface area within close contact to the substrate by integral to 125- fold. Cells on tenascin did not increase their surface area of contact. The increased surface area of contact and the inhibitory activity of cytochalasin b suggest that the adhesive "strengthening" in the 15 min after initial binding brings additional adhesion molecules into the adhesive site and couples the actin cytoskeleton to the adhesion complex.  相似文献   

8.
Summary Cell adhesion and communication is one of the most fascinating fields of modern biology. How do cells receive information from the environment and from neighboring cells? How does this information elicit morphogenesis, cell division and migration? The recent identification of the surface molecules involved in these events in animal systems is beginning to disclose that a continuum, extracellular matrix-plasma membrane-cytoskeleton, may be a common structure present in all eukaryotic cells. In this article we compare current knowledge on this complex structure in animal systems to the emerging data on plants. We point out the areas that need additional research to fully understand the role of the cell wall-cytoskeleton continuum in plants.Abbreviations ABP actin-binding protein - AGP arabinogalactan proteins - CTK cytoskeleton - ECM extracellular matrix - FN fibronectin - hFN human fibronectin - HRGP hydroxyproline-rich glycoproteins - hVN human vitronectin - PM plasma membrane - SAM substrate adhesion molecule - VN vitronectin Dedicated to Professor Dr. Hartmut K. Lichtenthaler on the occasion of his 60th birthday  相似文献   

9.
S C Cannon  R H Brown  D P Corey 《Neuron》1991,6(4):619-626
Hyperkalemic periodic analysis (HPP) is an autosomal dominant disorder characterized by episodic weakness lasting minutes to days in association with a mild elevation in serum K+. In vitro measurements of whole-cell currents in HPP muscle have demonstrated a persistent, tetrodotoxin-sensitive Na+ current, and we have recently shown by linkage analysis that the Na+ channel alpha subunit gene may contain the HPP mutation. In this study, we have made patch-clamp recordings from cultured HPP myotubes and found a defect in the normal voltage-dependent inactivation of Na+ channels. Moderate elevation of extracellular K+ favors an aberrant gating mode in a small fraction of the channels that is characterized by persistent reopenings and prolonged dwell times in the open state. The Na+ current, through noninactivating channels, may cause the skeletal muscle weakness in HPP by depolarizing the cell, thereby inactivating normal Na+ channels, which are then unable to generate an action potential. Thus the dominant expression of HPP is manifest by inactivation of the wild-type Na+ channel through the influence of the mutant gene product on membrane voltage.  相似文献   

10.
Integrative and firing properties are important characteristics of neuronal circuits and these responses are determined in large part by the repertoire of ion channels they express, which can vary considerably between cell types. Recently, a new mode of operation of voltage dependent sodium channels has been described that generates a so-called resurgent Na+ current. Accumulating evidence suggests resurgent Na current participates in the generation of sub-threshold inward Na+ current causing membrane depolarization which provides the necessary drive to fire high-frequency action potentials. Recent studies indicate that resurgent Na+ current could be a more widespread feature than previously thought.  相似文献   

11.
Sig1R (Sigma-1receptor) is a 25-kDa protein structurally unrelated to other mammalian proteins. Sig1R is present in brain, liver, and heart and is overexpressed in cancer cells. Studies using exogenous sigma ligands have shown that Sig1R interacts with a variety of ion channels, but its intrinsic function and mechanism of action remain unclear. The human ether-à-gogo related gene (hERG) encodes a cardiac channel that is also abnormally expressed in many primary human cancers, potentiating tumor progression through the modulation of extracellular matrix adhesive interactions. We show herein that sigma ligands inhibit hERG current density and cell adhesion to fibronectin in K562 myeloid leukemia cells. Heterologous expression in Xenopus oocytes demonstrates that Sig1R potentiates hERG current by stimulating channel subunit biosynthesis. Silencing Sig1R in leukemic K562 cells depresses hERG current density and cell adhesion to fibronectin by reducing hERG membrane expression. In K562 cells, Sig1R silencing does not modify hERG mRNA contents but reduces hERG mature form densities. In HEK cells expressing hERG and Sig1R, both proteins co-immunoprecipitate, demonstrating a physical association. Finally, Sig1R expression enhances both channel protein maturation and stability. Altogether, these results demonstrate for the first time that Sig1R controls ion channel expression through the regulation of subunit trafficking activity.  相似文献   

12.
Oocytes of the South African clawed toad Xenopus laevis possess in their plasma membrane a so-called stretch-activated cation channel (SAC) which is activated by gently applying positive or negative pressure (stretch) to the membrane patch containing the channels. We show here that this mechanosensitive channel acted as a spontaneously opening, stretch-independent non-selective cation channel (NSCC) in more than half of the oocytes that we investigated. In 55% of cell-attached patches (total number of patches, 58) on 30 oocytes from several different donors, we found NSCC opening events. These currents were increased by elevating the membrane voltage or raising the temperature. NSCC and SAC currents shared some properties regarding the relative conductances of Na+>Li+>Ca2+, gating behaviour and amiloride sensitivity. Stretch-independent currents could be clearly distinguished from stretch induced SAC currents by their voltage and temperature dependence. Open events of NSCC increased strongly when temperature was raised from 21 to 27 degrees C. NSCC currents could be partly inhibited by high concentrations of extracellular Gd3+ and amiloride (100 and 500 microM, respectively). We further show exemplarily that NSCC can seriously hamper investigations when oocytes are used for the expression of foreign ion channels. In particular, NSCC complicated investigations on cation channels with small conductance as we demonstrate for a 4 pS epithelial Na+ channel (ENaC) from guinea pig distal colon. Our studies on NSCCs suggest the involvement of these channels in oocyte temperature response and ion transport regulation. From our results we suggest that NSCC and SAC currents are carried by one protein operating in different modes.  相似文献   

13.
Extracellular excitation of neurons is applied in studies of cultured networks and brain tissue, as well as in neuroprosthetics. We elucidate its mechanism in an electrophysiological approach by comparing voltage-clamp and current-clamp recordings of individual neurons on an insulated planar electrode. Noninvasive stimulation of neurons from pedal ganglia of Lymnaea stagnalis is achieved by defined voltage ramps applied to an electrolyte/HfO2/silicon capacitor. Effects on the smaller attached cell membrane and the larger free membrane are distinguished in a two-domain-stimulation model. Under current-clamp, we study the polarization that is induced for closed ion channels. Under voltage-clamp, we determine the capacitive gating of ion channels in the attached membrane by falling voltage ramps and for comparison also the gating of all channels by conventional variation of the intracellular voltage. Neuronal excitation is elicited under current-clamp by two mechanisms: Rising voltage ramps depolarize the free membrane such that an action potential is triggered. Falling voltage ramps depolarize the attached membrane such that local ion currents are activated that depolarize the free membrane and trigger an action potential. The electrophysiological analysis of extracellular stimulation in the simple model system is a basis for its systematic optimization in neuronal networks and brain tissue.  相似文献   

14.
Interactions between endothelial cells and extracellular matrix proteins are important determinants of endothelial cell signaling. Endothelial adhesion to fibronectin through alpha(v)beta(3) integrins or the engagement and aggregation of luminal alpha(v)beta(3) receptors by vitronectin triggers Ca2+ influx. However, the underlying signaling mechanisms are unknown. The electrophysiological basis of alpha(v)beta(3) integrin-mediated changes in endothelial cell Ca2+ signaling was studied using whole cell patch clamp and microfluorimetry. The resting membrane potential of bovine pulmonary artery endothelial cells averaged -60 +/- 3 mV. In the absence of intracellular Ca2+ buffering, the application of soluble vitronectin (200 microg/ml) resulted in activation of an outwardly rectifying K+ current at holding potentials from -50 to +50 mV. Neither a significant shift in reversal potential (in voltage clamp mode) nor a change in membrane potential (in current clamp mode) occurred in response to vitronectin. Vitronectin-activated current was significantly inhibited by pretreatment with the alpha(v)beta(3) integrin antibody LM609 by exchanging extracellular K+ with Cs+ or by the application of iberiotoxin, a selective inhibitor of large-conductance, Ca2+-activated K+ channels. With intracellular Ca2+ buffered by EGTA in the recording pipette, vitronectin-activated K+ current was abolished. Fura-2 microfluorimetry revealed that vitronectin induced a significant and sustained increase in intracellular Ca2+ concentration, although vitronectin-induced Ca2+ current could not be detected. This is the first report to show that an endothelial cell ion channel is regulated by integrin activation, and this K+ current likely plays a crucial role in maintaining membrane potential and a Ca2+ driving force during engagement and activation of endothelial cell alpha(v)beta(3) integrin.  相似文献   

15.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

16.
The interaction of cells in a tissue depends on the nature of the extracellular matrix. The electrical properties of the narrow extracellular space are unknown. Here we consider cell adhesion mediated by extracellular matrix protein on a solid substrate as a model system. We culture human embryonic kidney (HEK293) cells on silica coated with fibronectin and determine the electrical resistivity in the cell-solid junction rhoJ=rJdJ by combining measurements of the sheet resistance rJ and of the distance dJ between membrane and substrate. The sheet resistance is obtained from phase fluorometry of the voltage-sensitive dye ANNINE-5 by alternating-current stimulation from the substrate. The distance is measured by fluorescence interference contrast microscopy. We change the resistivity of the bath in a range from 66 Omega cm to 750 Omega cm and find that the sheet resistance rJ is proportionally enhanced, but that the distance is invariant around dJ=75 nm. In all cases, the resulting resistivity rhoJ is indistinguishable from the resistivity of the bath. A similar result is obtained for rat neurons cultured on polylysine. On that basis, we propose a "bulk resistivity in cell adhesion" model for cell-solid junctions. The observations suggest that the electrical interaction between cells in a tissue is determined by an extracellular space with the electrical properties of bulk electrolyte.  相似文献   

17.
Immunofluorescent labeling for fibronectin was largely excluded from sites of closest contact between spreading chicken gizzard fibroblasts and the substratum. This was observed by double immunofluorescent labeling of fixed cells for fibronectin and vinculin, a smooth muscle intracellular protein that is specifically associated with focal adhesion plaques, in conjunction with interference-reflection microscopy. When the cells were plated on a fibronectin-coated substratum they adhered to its surface and rapidly spread on it. The immunofluorescent labeling for fibronectin in those cultures (after fixation and triton permeabilization) was usually absent from the newly formed, vinculin-containing focal adhesion plaques. We have found, however, that the accessibility to the cell-substrate gap at the focal adhesion plaques is limited and therefore a more direct approach was adopted. We have found that cells spreading on a substrate coated with rhodamine-labeled fibronectin progressively removed the underlying protein from the substrate. The removal of fibronectin involved at least two distinct mechanisms. Part of the substrate-associated fibronectin was removed from small areas and displaced toward the cell center. The arrowhead-shaped areas from which fibronectin was removed often coincided with vinculin-rich focal contacts. We observed, however, many areas where focal contacts were found over unperturbed fibronectin carpet, as well as fibronectin-free areas with no overlapping focal contacts. The possibilities that fibronectin is actively displaced from areas of cell-substrate contact, that the focal adhesion plaques are transiently associated with these areas and their implications on the dynamics of cell spreading and locomotion are discussed. The second route of fibronectin removal from the substrate was endocytosis. The rhodamine-labeled fibronectin was found in the cells in a partial or transient association with clathrin-containing structures.  相似文献   

18.
Neurotransmitter transporters are reported to mediate transmembrane ion movements that are poorly coupled to neurotransmitter transport and to exhibit complex "channel-like" behaviors that challenge the classical "alternating access" transport model. To test alternative models, and to develop an improved model for the Na+- and Cl--dependent gamma-aminobutyric acid (GABA) transporter, GAT1, we expressed GAT1 in Xenopus oocytes and analyzed its function in detail in giant membrane patches. We detected no Na+- or Cl--dependent currents in the absence of GABA, nor did we detect activating effects of substrates added to the trans side. Outward GAT1 current ("reverse" transport mode) requires the presence of all three substrates on the cytoplasmic side. Inward GAT1 current ("forward" transport mode) can be partially activated by GABA and Na+ on the extracellular (pipette) side in the nominal absence of Cl-. With all three substrates on both membrane sides, reversal potentials defined with specific GAT1 inhibitors are consistent with the proposed stoichiometry of 1GABA:2Na+:1Cl-. As predicted for the "alternating access" model, addition of a substrate to the trans side (120 mM extracellular Na+) decreases the half-maximal concentration for activation of current by a substrate on the cis side (cytoplasmic GABA). In the presence of extracellular Na+, the half-maximal cytoplasmic GABA concentration is increased by decreasing cytoplasmic Cl-. In the absence of extracellular Na+, half-maximal cytoplasmic substrate concentrations (8 mM Cl-, 2 mM GABA, 60 mM Na+) do not change when cosubstrate concentrations are reduced, with the exception that reducing cytoplasmic Cl- increases the half-maximal cytoplasmic Na+ concentration. The forward GAT1 current (i.e., inward current with all extracellular substrates present) is inhibited monotonically by cytoplasmic Cl- (Ki, 8 mM); cytoplasmic Na+ and cytoplasmic GABA are without effect in the absence of cytoplasmic Cl-. In the absence of extracellular Na+, current-voltage relations for reverse transport current (i.e., outward current with all cytoplasmic substrates present) can be approximated by shallow exponential functions whose slopes are consistent with rate-limiting steps moving 0.15-0.3 equivalent charges. The slopes of current-voltage relations change only little when current is reduced four- to eightfold by lowering each cosubstrate concentration; they increase twofold upon addition of 100 mM Na+ to the extracellular (pipette) side.  相似文献   

19.
Summary The membrane ofParamecium generates a Ca-dependent Na current upon depolarization. There is, however, also a Na current upon hyperpolarization in this membrane. The second Na current was analyzed under voltage clamp and found to have properties identical to those of the first. Both currents could be carried by Na and Li ions and not by K, Cs or choline ion. They were eliminated by either EGTA injection into the cell or Ca removal from the bath. Both currents were eliminated by a single-gene mutation,fast-2, that had no effect on Ca currents. These findings strongly suggest that these two currents are through the same Ca-dependent Na conductance. A hyperpolarization-induced Ca current was also identified, which served to activate the second Na current. These observations support a model that theParamecium membrane has two Ca channels with different voltage dependencies and only one Na channel, which is elicited by a rise of the itternal free Ca2+ concentration. The function of the Ca-dependent Na conductance is discussed.  相似文献   

20.
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号