首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Autonomic innervation of receptors and muscle fibres in cat skeletal muscle   总被引:3,自引:0,他引:3  
Cat hindlimb muscles, deprived of their somatic innervation, have been examined with fluorescence and electron microscopy and in teased, silver preparations; normal diaphragm muscles have been examined with electron microscopy only. An autonomic innervation was found to be supplied to both intra- and extrafusal muscle fibres. It is not present in all muscle spindles and is not supplied at all to tendon organs. Fluorescence microscopy revealed a noradrenergic innervation distributed to extrafusal muscle fibres and some spindles. On the basis of the vesicle content of varicosities the extrafusal innervation was identified as noradrenergic (32 axons traced), and the spindle innervation as involving noradrenergic, cholinergic and non-adrenergic axons (14 traced). Some of the noradrenergic axons that innervate spindles and extrafusal muscle fibres are branches of axons that also innervate blood vessels. We cannot say whether there are any noradrenergic axons that are exclusively distributed to intra- or extrafusal muscle fibres. The varicosities themselves may be in neuroeffective association with striated muscle fibres only, or with both striated fibres and the smooth muscle cells in the walls of blood vessels. The functional implications of this direct autonomic innervation of muscle spindles and skeletal muscle fibres are discussed and past work on the subject is evaluated.  相似文献   

3.
Smit WA  Velzing EH 《Tissue & cell》1986,18(3):469-478
The transformation of the slow contracting larval m. obliquus lateralis caudalis II during metamorphosis into the asynchronous indirect flight muscle, m. obliquus lateralis dorsalis, in the Colorado beetle, Leptinotarsa decemlineata, was examined by electron microscopy. Particular attention was paid to the fate of the larval muscle fibres, the origin and behaviour of the myoblasts for flight muscle development and the change of the myofibrillar filament lattice of the larva into that of the adult. In the pre-pupal period, the larval muscles dedifferentiate and fragment. At pupation, the muscle fibres consist of cell fragments containing very few myofibrils. The sarcoplasmic reticulum and the transverse tubular system are greatly reduced. The number of myoblasts developed from satellite cells by mitosis increases considerably. They penetrate the muscle fibre and surround the cell fragments. The new fibres of the flight muscle develop from myocytes fused with the larval fragments. The larval basal lamina, surrounding the cell fragments and myoblasts, is present in pupae up to 1 day old. In pupae about 2.5 days old new myofibrils appear that have the adult filament lattice. The insect muscle transformation and the repair of vertebrate muscle after injury show striking resemblances.  相似文献   

4.
Strips of denervated adult mouse diaphragm muscle maintained in organ culture were reinnervated by nerve processes growing out from explants of embryonic mouse spinal cord. In vivo, following denervation, the action potential loses its sensitivity to tetrodotoxin; this sensitivity is regained upon reinnervation. Similarly, action potentials in cultured muscle fibres were insensitive to tetrodotoxin, and sensitivity was restored in muscle fibres that became reinnervated in vitro. Tetrodotoxin sensitivity was also restored in cultured muscle fibres reinnervated in the continuous presence of d-tubocurarine, but it was not induced by 4 days of direct electrical stimulation of noninnervated muscles. We conclude that developing nerve terminals can exert a trophic action on adult muscle fibres that is independent of electrical activity in the muscle.  相似文献   

5.
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.  相似文献   

6.
The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.  相似文献   

7.
A great number of macrophages is found to be evenly distributed in the muscle layer of the gastrointestinal tract. We investigated their effects on smooth muscle contraction and the initiation of immune reactions such as inflammatory responses. Macrophages were demonstrated by the uptake of FITC-dextran and their ultrastructural features were elucidated by electron microscopy. Muscle layers of rats’ ileums were incubated with lipopolysaccharide (LPS) for 4–8 h and the force of smooth muscle contraction was measured. The induction effect of inducible nitric oxide synthase (iNOS) on macrophages was then checked by immunohistochemistry. The expression of major histocompatibility complex (MHC) class II was also examined. Macrophages in the muscle layer were confirmed as resident macrophages and were different from a population of dendritic cells. After incubation with LPS, macrophages began to express iNOS and produced NO, and it reduced smooth muscle contraction. iNOS-immunopositive cells increased in a time-dependent manner. Macrophages also began to express MHC class II. The total number of macrophages did not alter after incubation. Results indicate that resident macrophages in the muscle layer induced iNOS as an inflammatory reaction, affected smooth muscle contraction, and initiated immune response in the smooth muscle layer of the gastrointestinal tract, when activated by LPS. Accepted: 24 November 1999  相似文献   

8.
Summary The effects of hypokinesia and of the lack of gravity on muscle fibres, fibre type composition and myosin light chain pattern, as well as on muscle mechanoreceptors were investigated in the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of young growing and adult rats after suspension hypokinesia (SH) of their hind limbs. The animals were suspended by their tail so that their hind limbs were relieved of their normal weight-bearing function for 3–6 weeks.In normal 3-to 4-week-old rats the SOL contained about 50% type I fibres and their percentage increased up to about 80% until the 10th week, with simultaneous reduction of type IIA fibres. After 3 to 6 weeks of suspension treatment maintained from 3-to, 4-week-old rats up to 6 to 10 weeks of age, the SOL still only contained about 50% of type I fibres. The content of fast LC1 and LC2 in the SOL of 6-week-old rats after 3 weeks of suspension was higher than that of control litter-mates reflecting the higher occurrence of IIA fibres in the suspended solei. No changes in fibre type composition were observed after SH performed in adult rats.SH thus leads, in young animals, to the arrest of conversion of type IIA to type I fibres resulting in the persistence of the fibre type composition and of the myosin light chain pattern corresponding to those present in the SOL at the time of the onset of suspension. In both young and adult rats, SH markedly decreased the mass and the mean cross-sectional area of the SOL, mainly due to the severe atrophy of type I fibres. We observed no signs indicating conversion of type I back to type IIA muscle fibres due to the SH either in young or adult animals.In contrast to profound changes in the SOL, no significant differences were found in the EDL in any of the parameters studied.No changes in the investigated parameters of muscle spindles and tendon organs were observed after SH, performed either in young or in adult rats.We thus conclude that SH leads to muscle atrophy and that it influences mainly or exclusively type I fibres in muscles with a postural function such as the SOL. It is suggested that in young rats SH arrests changes in the SOL motoneurones, which remain unable to ensure the normal developmental transformation of type IIA into type I fibres, thus preventing conversion of the SOL into a typical slow-twitch muscle.  相似文献   

9.
Human temporomandibular disorders due to disturbed occlusal mechanics are characterized by sensory, motor and autonomic symptoms, possibly related to muscle overwork and fatigue. Our previous study in rats with experimentally-induced malocclusion due to unilateral molar cusp amputation showed that the ipsilateral masseter muscles undergo morphological and biochemical changes consistent with muscle hypercontraction and ischemia. In the present study, the masseter muscle spindles of the same malocclusion-bearing rats were examined by electron microscopy. Sham-operated rats were used as controls. In the treated rats, clear-cut alterations of the muscle spindles were observed 26 days after surgery, when the extrafusal muscle showed the more severe damage. The fusal alterations affected predominantly capsular cells, intrafusal muscle fibers and sensory nerve endings. These results suggest that in the malocclusion-bearing rats, an abnormal reflex regulation of the motor activity of the masticatory muscles may take place. They also allow us to hypothesize that muscle spindle alterations might be involved in the pathogenesis of human temporomandibular disorders.  相似文献   

10.
Two soleus muscles with degenerating muscle fibres were serially sectioned and adjacent sections from various levels of the skeletal muscles were stained with antibodies that react with either monocytes and inflammatory macrophages (ED1) or with the major subpopulations of resident macrophages (ED2 and ED3). ED2+ and ED3+ resident macrophages were abundant throughout the muscles but were not present within the degenerating fibres. ED1+ cells, in contrast, were rarely observed within the undamaged regions of the muscles but were abundant within the degenerating fibres and in the perimysium between arterioles and degenerating fibres. It is concluded that the phagocytosis of damaged muscle fibres is not carried out by the major subpopulations of resident macrophages.  相似文献   

11.
 Examination was made of the involvement of macrophage phagocytosis in programmed cell death of tail and body muscle of the frog, Xenopus laevis, during metamorphosis by electron microscopy and immunohistochemical analysis. Electron microscopic observation revealed that macrophages were often found to be present in body and tail muscles at the most active stage of metamorphosis and to actively phagocytose apoptotic muscle fragments. Developmental changes in macrophages were examined using the macrophage-specific antibody, HAM56. Macrophages initially appeared in the early climax stage (stage 59), when the triiodothyronine (T3) level was high, increased rapidly during the process of muscle cell death, and assumed their greatest number at the late climax stage (stage 63/64). They decreased after stage 65/66, with a decrease in T3. Distribution and change in the number of macrophages were the same as those of muscle apoptotic bodies (sarcolytes) during metamorphosis, which suggests an interactive mechanism between macrophages and dying muscle cells. For clarification of this, study was made of the expression of HAM 56 antigens that were X. laevis homologs of mouse attachmin, non-specific adhesion proteins in macrophages. The expression of HAM56 antigens in macrophages was found to increase with macrophage phagocytosis at the late climax stage, thus, macrophage differentiation would appear to take place during metamorphosis and HAM56 antigens may be essential for macrophage–dying muscle cell interactions. Accepted: 29 May 1997  相似文献   

12.
Role of nerve and muscle factors in the development of rat muscle spindles   总被引:2,自引:0,他引:2  
The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (alpha) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (gamma) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when gamma axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not gamma motor innervation. However, transient innervation of future bag2 fibers by alpha axons suggests that both sensory and alpha motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.  相似文献   

13.
The histogenesis of rat intercostal muscle   总被引:2,自引:17,他引:2       下载免费PDF全文
Intercostal muscle from fetal and newborn rats was examined with the electron microscope. At 16 days' gestation, the developing muscle was composed of primary generations of myotubes, many of which were clustered together in groups. Within these groups, the membranes of neighboring myotubes were interconnected by specialized junctions, including tight junctions. Morphologically undifferentiated cells surrounded the muscle groups, frequently extended pseudopodia along the interspace between adjacent myotubes, and appeared to separate neighboring myotubes from one another. At 18 and 20 days' gestation, the muscle was also composed of groups of cells but the structure of the groups differed from that of the groups observed at 16 days. Single, well differentiated myotubes containing much central glycogen and peripheral myofibrils dominated each group. These large cells were interpreted as primary myotubes. Small, less differentiated muscle cells and undifferentiated cells clustered around their walls. Each cluster was ensheated by a basal lamina. The small cells were interpreted as primordia of new generations of muscle cells which differentiated by appositional growth along the walls of the large primary myotubes. All generations of rat intercostal muscle cells matured to myofibers between 20 days' gestation and birth. Coincidentally, large and small myofibers diverged from each other, leading to disintegration of the groups of muscle cells. Undifferentiated cells frequently occurred in the interspaces between neighboring muscle cells at the time of separation. Myofibers arising at different stages of muscle histogenesis intermingled in a checkerboard fashion as a result of this asynchronous mode of development. The possibility of fusion between neighboring muscle cells in this developing system is discussed.  相似文献   

14.
Nitric oxide synthase II in rat skeletal muscles   总被引:2,自引:2,他引:0  
Constitutive expression of nitric oxide synthase (NOS) II was found in rat hindlimb muscles by immunohistochemistry and western blotting during development from embryonic day 21 to the adult stage of 75 days. The immunohistochemical NOS II expression pattern was related to the physiological metabolic fibre types SO (slow-oxidative), FOG I, II (fast-oxidative glycolytic; I more glycolytic, II more oxidative) and FG (fast-glycolytic) and to the myosin-based fibre types I and IIA, IIB (IIX not separated) identified in serial sections by enzyme histochemistry and immunohistochemistry. In adult muscles only the small population of FOG II fibres, which is a part of both IIA and IIB fibre population, showed NOS II immunoreactivity. This is the reason that only weak NOS II expression in adult hindlimb muscles has been detected by western blotting. Hindlimb muscles of embryonic, neonatal and young rats of 8 days expressed more NOS II as compared with adult rat hindlimb muscles. This can be explained by the findings that before the age of 21 days fast fibres were metabolically undifferentiated, all of them were NOS II positive and contribute to the NOS II expression of the muscle. In muscles of diabetic rats the NOS II expression was elevated indicating an inhibition of glucose uptake into the muscle fibres of diabetic muscles. Our findings suggest that the NOS II may be designated both as constitutive and inducible.  相似文献   

15.
In the present study the effect of thyroxine treatment on the development of cardiomegaly was compared in young (10-day-old) and adult (12-week-old) rats. L-thyroxine was administered subcutaneously in a dose of 1 mg per kg b.w. for 5 days. In young thyroxine-treated rats the heart weight increased by 79% in comparison with the control rats. The number of blood capillaries and muscle fibres per mm2 remained unchanged. The concentration of hydroxyproline was even lower than in control animals. The number of 3H-thymidine-labelled muscle cell nuclei was significantly higher both in the left and right ventricles of thyroxine treated rats. The density of capillaries and muscle fibres was significantly lower in adult rats than in the group of young animals. In adult thyroxine-treated animals the heart weight was higher by 36%, the number of capillaries and muscle fibres as well as the concentration of hydroxyproline was unchanged. Thyroxine induced significant increase in the number of DNA synthesizing nuclei of muscle cells in the left ventricle while the change in the right ventricular myocardium was not statistically significant. The present data indicate that a hyperplastic response of cardiac muscle cells to thyroxine occurs in both ventricles of young rats and also in the left ventricle of adult animals.  相似文献   

16.
Structural and functional interactions exist between Leydig cells and testicular macrophages of adult rats. Since the function of Leydig cells changes during critical periods of development and postnatal maturation, it is possible that macrophages are in part involved in regulating this process. As a first step towards gaining an understanding of the development of this paracrine phenomenon, I have undertaken a series of studies designed to determine when macrophages first become identifiable in the fetal tests and to determine whether the concentration or size of macrophages changes during important stages of testicular maturation. Macrophages were identified immunohistochemically in frozen sections of testis from rats at various prenatal and postnatal ages using commercially available monoclonal antibodies to proteins specific to rat macrophages. It was found that macrophages positive for these antigens were found only within the interstitial compartment and were commonly associated with clusters of presumptive Leydig cells that were negative for these antigens. Macrophages were first identifiable in the testis at Day 19 of fetal development. The number of macrophages/unit area of interstitium increased 15-fold between Day 20 of gestation and Day 47 postpartum. The cross-sectional area of the macrophages increased 1.7-fold between Days 13 and 47 postpartum. These results demonstrate that the number and size of testicular macrophages changes with age, suggesting a role for these cells during important times of testicular development and maturation.  相似文献   

17.
Heterotopic bone formation induced by demineralized bone matrix gelatin (BMG) in bupivacaine-HCl-treated skeletal muscle was examined histologically. BMG was obtained by dehydrating diaphyseal shafts of femora and tibiae of male, 4-week-old Sprague-Dawley (SD) rats, cutting it into chips, and demineralizing and extracting the chips with various solutions. The BMG was implanted into the rectus abdominis muscle of male, 5-week-old SD rats, bupivacaine-HCl was injected at the same site, and the resulting plaques of tissues were examined histologically on days 5, 10, 15 and 20 after BMG implantation. Heterotopic bone formation occurred in all animals. The bupivacaine-treated group had more degenerated and injured muscle fibers, and more osteocytes than the control group. Electron microscopy showed that the basement membrane of muscle fibers was discontinuous and that many mononucleated cells resembling activated satellite cells were present on day 5. Many fibroblasts, undifferentiated mesenchymal cells and myogenic cells were seen in the area around the BMG. In new bones there were few osteocytes on day 10, but their numbers were increased on days 15 and 20 after implantation, especially in the bupivacaine-treated group. The population of osteocytes that increased rapidly may have included mononucleated cells similar to activated satellite cells.  相似文献   

18.
Lipofuscin, the so-called ageing pigment, is formed by the oxidative degradation of cellular macromolecules by oxygen-derived free radicals and redox-active metal ions. Usually it accumulates in post-mitotic, long-lived cells such as neurons and cardiac muscle cells. In contrast, it is rarely seen in either normal or diseased skeletal muscle fibres. In this paper, we report that lipofuscin accumulates at an early age in both human and murine dystrophic muscles. Autofluorescent lipofuscin granules were localized, using confocal laser scanning microscopy and electron microscopy, in dystrophin-deficient skeletal muscles of X chromosome-linked young Duchenne muscular dystrophy (DMD) patients and of mdx mice at various ages after birth. Age-matched normal controls were studied similarly. Autofluorescent lipofuscin granules were observed in dystrophic biceps brachii muscles of 2-7-year-old DMD patients where degeneration and regeneration of myofibres are active, but they were rarely seen in age-matched normal controls. In normal mice, lipofuscin first appears in diaphragm muscles nearly 20 weeks after birth but in mdx muscles it occurs much earlier, 4 weeks after birth, when the primary degeneration of dystrophin-deficient myofibres is at a peak. Lipofuscin accumulation increases with age in both mdx and normal controls and is always higher in dystrophic muscles than in age-matched normal controls. At the electron microscopical level, it was confirmed that the localisation of autofluorescent granules observed by light microscopy in dystrophin-deficient skeletal muscles coincided with lipofuscin granules in myofibres and myosatellite cells, and in macrophages accumulating around myofibres and in interstitial connective tissue. Our results agree with previous biochemical and histochemical data implying increased oxidative damages in DMD and mdx muscles. They indicate that dystrophin-deficient myofibres are either more susceptible to oxidative stress, or are subjected to higher intra- or extracellular oxidative stress than normal controls, or both.  相似文献   

19.
Being born directly into the aquatic environment creates unique challenges for the breathing muscles of neonatal cetaceans. Not only must these muscles be active at the instant of birth to ventilate the lungs, but their activities must also be coordinated with those of the locomotor muscles such that breathing takes place only at the water's surface. At least one major locomotory muscle of bottlenose dolphins (Tursiops truncatus) has been demonstrated to be well developed and, therefore, able to power the neonatal dolphin's early movements (Dearolf et al. [2000] J Morphol 244:203-215). Thus, because of the demands for coordinated behavior with the locomotor muscles, it is hypothesized that the breathing muscles of bottlenose dolphins, represented in this study by the diaphragm, will also demonstrate adult morphology at birth. However, histochemical and biochemical analyses demonstrate that neonatal dolphins have immature diaphragms, with only 52% of the adult slow fiber-type profile (neonates: 34% slow-twitch fibers; adults: 66% slow-twitch fibers). The developmental state of the dolphin diaphragm is compared to those of other neonatal mammals, using a muscle development index (% slow-twitch fibers in neonatal muscle / % slow-twitch fibers in adult muscle). Fiber-type profiles reported in the literature are used to calculate index values for the diaphragms of altricial rats, rabbits, and cats, intermediate baboons and humans, and precocial sheep and horses. The dolphin is not unique in having an immature diaphragm at birth; however, there is a positive relationship between the developmental state of the diaphragm and the overall developmental state of the neonate. The presence of type IIc ("undifferentiated") fibers in the diaphragms of altricial developers (e.g., rats, rabbits, and cats) is correlated with the slow contraction speeds recorded from their diaphragms. The diaphragms of neonatal horses and dolphins express little to no type IIc fibers and, thus, may have the ability to contract at the speeds required for their increased ventilation rates. These results lead to the modification of the criterion for evaluating the developmental state of a muscle at birth. Thus, the developmental state of a neonatal muscle should be based on both its value of Dearolf et al.'s (2000) developmental index, as well as the percentage of type IIc fibers found in that muscle.  相似文献   

20.
Summary Methyl-bupivacaine is a local anaesthetic with a selective myotoxic action. A single subcutaneous injection of the drug into the hind leg of adult rats produces a uniform, complete and irreversible destruction of superficial layers of fibres in the underlying extensor digitorum longus muscle. The degeneration of muscle fibres is followed by phagocytosis and a rapid and complete regeneration.The first stage in the regeneration process is the appearance of presumptive myoblasts within the original basement membrane of the sarcolemmal tube. On the second day after injury aggregates of myoblasts are present and fusion is observed between the cells. The myotubes thus formed increase in size by fusing with additional myoblasts. Myotubes are also observed to fuse with one another. On the fifth day after injury the regeneration process has proceeded to the stage of early muscle fibres with fully differentiated myofibrils with typical sarcomere structures. By ten days only mature muscle fibres of about normal size are present and regeneration appears complete.In previously denervated and methyl-bupivacaine treated muscles the stages of regeneration are similar to those observed in innervated muscles, the only apparent difference being a slowing of cell differentiation and incomplete maturation.An electrophysiological study shows that the motor nerve at the third day after injury forms synaptic contacts with regenerating muscle cells. At that stage of myogenesis the myotubes are highly sensitive to applied acetylcholine.1 (1-n-butyl-DL-piperidine-2-carboxylic acid-2,6-dimethyl-anilide-hydrochloride); Marcaine®, manufactured by AB Bofors, Nobel-Pharma, Mölndal, Sweden.The study was carried out under the auspicies of The Czechoslovak Academy of Sciences and the Royal Academy of Sciences in Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号