首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viable counts, turbidities, and electron micrographs of Bacillus subtilis exposed to beta-lysin and ultraviolet light (UV), singly or in combination, were compared in an attempt to relate death with changes in morphology. The decreases in survival of both the beta-lysin- and UV-treated cells were rapid and preceded decreases in turbidity, as well as the changes in morphology. No significant differences were observed in turbidity reduction or morphological alterations of control cells from those of cells exposed to UV light. These cells developed prominent subcell wall spaces during incubation in the hypertonic stabilizing medium. No observable damage in either the cell wall or the cell membrane had taken place during 4 hr, but by 20 hr extensive damage of these two structures was apparent. The control and UV-treated cells exposed to beta-lysin did not develop prominent subcell wall spaces. Within 2 hr, lesions were observable in their cell walls, and the cytoplasmic membranes were permeable to phosphotungstic acid. The damage to these structures became more extensive with time. Although the visible changes of control and UV-treated cells were evident much later than those induced by beta-lysin, the morphological alterations in all cells were similar. It appeared that beta-lysin caused an accelerated release of an autolytic enzyme which digested the cell walls.  相似文献   

2.
Pisum sativum plants were treated for 3 days with an aqueous solution of 100 μM Pb(NO3)2 or with a mixture of lead nitrate and ethylenediaminetetraacetic acid (EDTA) or [S,S]-ethylenediaminedisuccinic acid (EDDS) at equimolar concentrations. Lead decline from the incubation media and its accumulation and localization at the morphological and ultrastructural levels as well as plant growth parameters (root growth, root and shoot dry weight) were estimated after 1 and 3 days of treatment. The tested chelators, especially EDTA, significantly diminished Pb uptake by plants as compared to the lead nitrate-treated material. Simultaneously, EDTA significantly enhanced Pb translocation from roots to shoots. In the presence of both chelates, plant growth parameters remained considerably higher than in the case of uncomplexed Pb. Considerable differences between the tested chelators were visible in Pb localization both at the morphological and ultrastructural level. In Pb+EDTA-treated roots, lead was mainly located in the apical parts, while in Pb+EDDS-exposed material Pb was evenly distributed along the whole root length. Transmission electron microscopy and EDS analysis revealed that in meristematic cells of the roots incubated in Pb+EDTA, large electron-dense lead deposits were located in vacuoles and small granules were rarely noticed in cell walls or cytoplasm, while after Pb+EDDS treatment metal deposits were restricted to the border between plasmalemma and cell wall. Such results imply different ways of transport of those complexed Pb forms.  相似文献   

3.
Various mechanisms are involved in detoxification of heavy metals such as lead (Pb) in plant cells. Most of the Pb taken up by plants accumulates in their roots. However, the detailed properties of Pb complexes in roots remain unclear. We have investigated the properties of Pb deposits in root cell walls of radish (Raphanus sativus L.) seedlings grown on glass beads bed containing Pb pellets, which are the source of Pb-contamination in shooting range soils. Pb deposits were tightly bound to cell walls. Cell wall fragments containing about 50,000 ppm Pb were prepared from the roots. After extracting Pb from the cell wall fragments using HCl, Pb ions were recombined with the Pb-extracted cell wall fragments in a solution containing Pb acetate. When the cell wall fragments were treated with pectinase (E.C. 3.2.1.15) and were chemically modified with 1-ethyl-3-dimethylamino-propylcarboimide, the Pb-rebinding ability of the treated cell wall fragments decreased. When acid-treated cell wall fragments were incubated in a solution containing Pb2+ and excess amounts of a chelating agent, Pb recombined with the cell wall fragments were measured to estimate the affinity between Pb2+ and the cell wall fragments. Our data show that Pb2+ binds to carboxyl groups of cell walls. The source of the carboxyl groups is suggested to be pectic compounds. A stability constant of the Pb-cell wall complex was estimated to be about 108. The role of root cell walls in the mechanism underlying heavy metal tolerance was discussed.  相似文献   

4.
Effects of lead (Pb) and cadmium (Cd) both alone or in combination on the binding of LH and FSH on isolated granulosa cells were studied. Granulosa cells isolated from proestrous rats were incubated (in vitro) with lead acetate and/or cadmium acetate (0.03 microM of Pb or Cd) for 1 hr. LH binding was dropped to 84% in Pb treated cells, 72.5% in Cd treated cells and 74.8% in combined metal treated cells compared to control. FSH binding dropped to 85.5% in Pb treated cells, 71.16% in Cd treated cells and 72.5% in combined metal treated cells compared to control. Activity of 17beta Hydroxy Steroid Dehydrogenase (17betaHSDH), a key steroidogenic enzyme was reduced by 52% in Cd and 37% in combined metal exposed cells whereas Pb exposed cells showed 31% reduction in the enzyme activity. Pretreatment with SH groups protectants (glutathione [GSH], dithiothretol [DTT]) and zinc caused an ameriolation in enzyme activity whereas Zn pretreatment showed an increase in gonadotropin binding in metal exposed cells. These results suggest that both Pb and Cd can cause a reduction in LH and FSH binding, which significantly alters steroid production in vitro and exerts a direct influence on granulosa cell function.  相似文献   

5.
Lupin peroxidases. II. Binding of acidic isoperoxidases to cell walls   总被引:1,自引:0,他引:1  
Extracellular acidic isoperoxidases (EC 1.11.1.7), isolated from both the cell walls and intercellular spaces of lupin ( Lupinus albus L. cv. multolupa) hypocotyls, bound to water-insoluble pectins of wall fragments also isolated from the hypocotyls. The binding was sáturable by increasing the isoenzyme concentration in the assay medium and it was dependent on the pH; neutral pH (6.0–7.0) favoured release, while acidic pH (4.0–5.0) favoured the attachment to the cell wall. Binding of acidic isoperoxidases to wall fractions was correlated with the in vitro acid-induced growth of hypocotyl segments, and both were modulated in the same direction by the Ca2+/H+ ratio in the incubation media, although the two responses were clearly separated when the Ca2+/H+ ratio varied. Binding of acidic isoperoxidases of cell walls could operate as a fine control of the activity of these cell wall enzymes, although its physiological role in the cell wall stiffening remains unclear. Some aspects of Ca2+ on the control of peroxidase activity at this level are also discussed.  相似文献   

6.
Cell walls in 2 strains of Staphylococcus aureus 209P, i.e. actinomycin D susceptible and resistant ones were comparatively investigated. The resistant cells contained much more wall material per a unit of the biomass weight vs the susceptible strain cells, that conformed to thickening of the resistant cell walls detected by electron microscopy and a sharp increase of their electron density. Investigation of peptidoglycans and teichoic acids did not reveal any significant alterations in the structure of the wall components in the actinomycin D resistant cells. Only some increase of glucosamine in the peptidoglycan fraction of the resistant cells vs the susceptible ones was observed. It was shown that preparations of the resistant cell walls and peptidoglycan isolated from the resistant cells were able to bind somewhat lower quantities of actinomycin D vs the analogous preparations of the susceptible cells. The significant decrease of the antibiotic binding by live cells of the resistant strain probably slightly depended on the structure characteristics of the main wall components. The barrier properties of the walls in resistant staphylococci are most likely defined by the wall thickening and consolidation while adapting to actinomycin D.  相似文献   

7.
A highly vancomycin-resistant mutant (MIC = 100 microg/ml) of Staphylococcus aureus, mutant VM, which was isolated in the laboratory by a step-pressure procedure, continued to grow and synthesize peptidoglycan in the presence of vancomycin (50 microg/ml) in the medium, but the antibiotic completely inhibited cell wall turnover and autolysis, resulting in the accumulation of cell wall material at the cell surface and inhibition of daughter cell separation. Cultures of mutant VM removed vancomycin from the growth medium through binding the antibiotic to the cell walls, from which the antibiotic could be quantitatively recovered in biologically active form. Vancomycin blocked the in vitro hydrolysis of cell walls by autolytic enzyme extracts, lysostaphin and mutanolysin. Analysis of UDP-linked peptidoglycan precursors showed no evidence for the presence of D-lactate-terminating muropeptides. While there was no significant difference in the composition of muropeptide units of mutant and parental cell walls, the peptidoglycan of VM had a significantly lower degree of cross-linkage. These observations and the results of vancomycin-binding studies suggest alterations in the structural organization of the mutant cell walls such that access of the vancomycin molecules to the sites of wall biosynthesis is blocked.  相似文献   

8.
During the ageing process of normal red cells and in the formation of irreversibly sickled cells (ISCs) there is a progressive increase in the intracellular concentration of Ca2+. This is parallelled by the development of a variety of morphological and biochemical changes in older fractions of normal cells and in ISCs which are similar to those seen in normal cells exposed to Ca2+ ionophore. These changes include cell shrinkage, loss of membrane lipid and degradation of cytoskeletal proteins and polyphosphoinositides. In this paper we consider the ways in which the Ca2+-dependent biochemical changes may be related to the morphological alterations which are characteristic of ageing and irreversible sickling.  相似文献   

9.
Pectin, a normal constituent of cell walls, caused growth rates to accelerate to the rates in living cells when supplied externally to isolated cell walls of Chara corallina. Because this activity was not reported previously, the activity was investigated. Turgor pressure (P) was maintained in isolated walls or living cells using a pressure probe in culture medium. Pectin from various sources was supplied to the medium. Ca and Mg were the dominant inorganic elements in the wall. EGTA or pectin in the culture medium extracted moderate amounts of wall Ca and essentially all the wall Mg, and wall growth accelerated. Removing the external EGTA or pectin and replacing with fresh medium returned growth to the original rate. A high concentration of Ca2+ quenched the accelerating activity of EGTA or pectin and caused gelling of the pectin, physically inhibiting wall growth. Low pH had little effect. After the Mg had been removed, Ca-pectate in the wall bore the longitudinal load imposed by P. Removal of this Ca caused the wall to burst. Live cells and isolated walls reacted similarly. It was concluded that Ca cross-links between neighbouring pectin molecules were strong wall bonds that controlled wall growth rates. The central role of Ca-pectate chemistry was illustrated by removing Ca cross-links with new pectin (wall "loosening"), replacing vacated cross-links with new Ca2+ ("Ca2+-tightening"), or adding new cross-links with new Ca-pectate that gelled ("gel tightening"). These findings establish a molecular model for growth that includes wall deposition and assembly for sustained growth activity.  相似文献   

10.
The effects of hen egg white lysozyme and the inorganic salt sodium thiocyanate on the integrity of Streptococcus mutans BHT were studied by transmission electron microscopy. Both control cells and cells exposed to NaSCN possessed thick outer cell walls and densely staining inner cell walls juxtaposed to the plasma membranes. In the presence of NaSCN, however, the S. mutans BHT nucleoid was coagulated into thick electron-dense filaments. Exposure of S. mutans BHT to 150 μg of hen egg white lysozyme per ml resulted in the progressive destruction of both the cell walls and the plasma membranes. The enzyme appeared to affect the region of the cell wall septum, and exposure to 150 μg of hen egg white lysozyme per ml for as short a time as 10 min resulted in visible morphological cell wall alterations. At 30 min, ultrastructural observations revealed that the majority of the cells were in the process of expelling a portion of their cytoplasmic contents from the septal and other regions of the cells at the time of fixation. After 3 h of incubation in the presence of this high lysozyme concentration, gelled protoplasmic masses, which were free from the cells, were evident. In addition, extensive damage to the outer and inner cell walls and to the plasma membranes was apparent, although the cells maintained their shape. On some areas of the cell surface, the outer cell wall and plasma membrane were completely absent, whereas at other locations the outer cell wall was either split away from the inner cell wall and plasma membrane or distended from an area free of inner cell wall and plasma membrane. Upon addition of NaSCN to the hen egg white lysozyme-treated cells, both the gelled protoplasmic masses and the damaged cells exhibited an exploded appearance and existed as membrane ghosts, cell wall fragments, or dense aggregates of cytoplasmic components. The effects of a low lysozyme concentration (22.5 μg/ml) on S. mutans morphology were less pronounced at short incubation times (i.e., 10 and 30 min) than those that were observed with a high enzyme concentration; however, breaks in the cell walls and dissolution of the plasma membranes with resulting cell lysis were visible after a prolonged (3-h) incubation and after subsequent addition of NaSCN.  相似文献   

11.
Degradative enzymes have been used to obtain defined fragments of the isolated cell walls of suspension-cultured sycamore cells. These fragments have been purified and structurally characterized. Fragments released from endopolygalacturonase-pretreated cell walls by a purified endoglucanase and the fragments extracted from these walls by urea and alkali provide evidence for a covalent connection between the xyloglucan and pectic polysaccharides. Fragments released by a protease from endopolygalacturonase-endoglucanase-pretreated cell walls provide evidence for a covalent connection between the pectic polysaccharides and the structural protein of the cell wall. Based on these interconnections and the strong binding which occurs between the xyloglucan and cellulose, a tentative structure of the cell wall is proposed.  相似文献   

12.
The cell walls of a selected isolate of Staphylococcus aureus FDA 209P were observed undergoing progressive disintegration when exposed to lysostaphin (1 unit/ml) in 24% NaCl solution. Electron micrographs of ultrathin sections of test cells after exposure to lysostaphin for 2 min showed only superficial evidence of lytic damage. However, an average of 89% of these cells were osmotically fragile, and 21% were damaged beyond their capacity to regenerate cell walls and to grow as normal staphylococci. The 68% (average) of the osmotically fragile cells which retained the capacity to revert to normal staphylococci were designated spheroplasts. Neither perforations of the cell walls nor separation of the cell walls from the plasma membranes were observed in the micrographs of these 2-min spheroplasts. Thus, it appears that the osmotic fragility of these and possibly all lysostaphin-induced staphylococcal spheroplasts results from the hydrolysis of a critical number of the pentapeptide cross-linkages of the murein of the cell wall. Electron micrographs of cells exposed to lysostaphin for 5 to 10 min showed perforations and more extensive damage, including the separation of walls from the plasma membranes and the disintegration of large sections of the walls. Smaller numbers of spheroplasts (21 and 8%) were recovered from these 5- and 10-min preparations; those recovered probably represent cells which were attacked more slowly than the majority by the lytic enzyme. The nonrevertible, osmotically fragile cells that retained segments of cell wall were designated protoplast-like bodies. After 20-min exposure to lysostaphin, all of the cell wall was digested away from most of the cells, and true staphylococcal protoplasts were produced. These lysostaphin-induced, osmotically fragile forms appear to have different osmotic properties from the staphylococcal "protoplasts" reported by other investigators and should serve as the basis for a variety of fundamental investigations.  相似文献   

13.
When grown in a chemostat under various nutritional conditions, cells of Bacillus subtilis W23 produce walls containing teichoic acid or teichuronic acid. The binding of Mg2+ to these walls and to the isolated anionic polymers in solution was measured by equilibrium dialysis. In solution the ribitol teichoic acid bound Mg2+ in the molar ratio Mg2+/P=1:1 with an apparent association constant (Kassoc.) of 0.61 X 10(3)M-1, and the teichuronic acid bound Mg2+ in the ratio Mg2+/CO2-=1.1, Kassoc.=0.3 X 10(3)M-1. Cell walls containing teichuronic acid exhibited closely similar binding properties to those containing teichoic acid; in both cases Mg2+ was bound in the ratio Mg/P or Mg/CO2- of 0.5:1 and with a greater affinity than displayed by the isolated polymers in solution. It was concluded that Mg2+ ions are bound bivalently between anionic centres in the walls and that the incorporation of teichoic acid or teichuronic acid into the walls gives rise to similar ion-binding and charged properties. The results are discussed in relation to the possible functions of anionic polymers in cell walls.  相似文献   

14.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

15.
Micrococcus luteus cells exposed to Pb(NO3)2 contained cytosol ribosomal particles and disaggregated membranal ribosomal particles as determined by ultracentrifugation and spectral studies. Approx. 60% of the membrane ribosome fraction from lead exposed cells had a sedimentation value of 8.4S. Cytosol ribosomes from lead exposed cells as well as membranal and cytosol ribosomes from control cells were comparable by their contents of predominantly the 70S type with the 50S and 100S present in relatively small amounts. The lead content of the 8.4S component was more than 200 times higher than the components with higher sedimentation coefficients from lead exposed cells and approx. 650 times more than that of control cell ribosomes. The cells exposed to lead, however, showed no adverse effects from the lead in respect to their growth rates and cellular yields. These results indicate that lead is interacting only at specific sites of the membrane and is inducing events initiated only in strategic cellular regions. These data further substantiate that subtle changes do occur in lead exposed cells that show no obvious effects. It is assumed that these ‘minor’ alterations are, in toto, biologically significant.  相似文献   

16.
Nodules developed in Pisum sativum L. cv. Argona inoculated with Rhizobium leguminosarum bv. viciae 3841 and growing under saline conditions (75 mmol/L NaCl) are non functional and had abnormal structure. The infected cells contained a low amount of endophytic bacteria, compared to treatments without salt. Addition of B (up to 55.8 μmol/L) and Ca2+ (up to 2.72 mmol/L) increased bacterial population of host plant cells in salt-stressed nodules. Furthermore, symbiosomes developed inside the nodules from salt treated plants presented a degraded peribacteroid membrane. This effect was also prevented by combined addition of B and Ca2+. Given the importance of both nutrients in cell wall structure, the pectin fraction was studied by electron microscopy and immunological methods. Salt stress produced cells with walls dramatically altered or even degraded in several zones. Pectin polysaccharides, detected by JIM 5 monoclonal antibody, increased in cells under salinity. These effects resembled typical effects of B-deficiency reactions in cell walls, and the increase of both Ca2+ and especially B also prevented these alterations.  相似文献   

17.
三唑酮对玉米弯孢病菌超微结构和细胞化学的影响   总被引:2,自引:2,他引:0  
三唑酮(triadimenfon)属于麦角甾醇类生物合成抑制剂(ergosterol biosynthesis inhibitors.EBI),具有较广的抗真菌谱,明确其对玉米弯孢菌发育的影响可为该杀菌剂的田间应用提供理论依据。利用电镜技术和细胞化学技术观察的结果表明,玉米率孢菌经三唑酮处理后,菌丝生长明显受到抑制,表现为菌落生长速度减慢、菌丝分枝增多,且不观则地肿大和缢缩,出现许多瘤状突起,处理菌丝明显畸形。透射电镜观察结果表明,三唑酮可引起菌丝细胞壁不规则增厚,特别是菌丝顶端细胞壁增厚尤为明显:菌丝细胞隔膜发育受阴而表现畸形;菌丝细胞外有大量电子染色深的外渗物质。细胞化学标记定位结果表明,真菌细胞壁主要成分β-1,3-葡聚糖和几丁质的含量在药剂处理后发生很大变化,其标记密度明显低于未处理的对照菌丝,表明病菌细胞壁的结构和功能受到明显的不利影响。论文对弯孢菌受三唑酮影响后胞壁成份变化与其它真菌不同的原因进行了讨论。  相似文献   

18.
A wall-active, amphophilic antibiotic aculeacin A significantly but incompletely inhibited in vitro the activity of beta-(1,3)glucan synthase prepared from highly susceptible yeasts Saccharomyces cerevisiae and Candida albicans. In contrast, comparable cell-free preparations from S. cerevisiae active in chitin synthase or mannan synthase were insensitive to the antibiotic, suggesting selectivity of its action in synthesis of the yeast cell wall. An electron microscopic study of the effects of aculeacin A at 0.31 micrograms/ml, the optimally active concentration, on osmotically stabilized C. albicans cells revealed morphological alterations in both cell walls and cell membranes. Deformation in contour and derangement of the layered structure of the cell wall were prominent. In addition, massive fibrous material of beta-glucan-like microfibrils was occasionally extruded from the cell surface. Accompanying this effect on the cytology of the cell wall, ultrastructural and functional impairment of the cell membrane was demonstrated by transmission and freeze-fracture electron microscopic techniques. These data suggest that aculeacin A affects synthesis of the yeast cell wall through not only selective blockage of beta-(1,3)glucan synthase, as a result of a primary interaction with the cell membrane, but also inhibition of the fabrication of beta-glucan or other wall components into well-organized cell walls.  相似文献   

19.
The focus of the present study was to explore lead (Pb)-induced metabolic alterations vis-à-vis ultrastructural changes in wheat roots to establish Pb toxicity syndrome at a structural level. Pb (50–500 μM) enhanced malondialdehyde (an indicator of lipid peroxidation) and hydrogen peroxide content, and electrolyte leakage, thereby suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in wheat roots. The activities of superoxide dismutases and catalases enhanced upon Pb exposure, whereas those of ascorbate and guaiacol peroxidases declined. Pb-induced metabolic disruption was manifested in significant alterations in wheat root ultrastructure as analyzed by transmission electron microscopy. Pb caused thinning of cell wall (at 50 μM), formation of amoeboid protrusions and folds and intercellular spaces, and appearance of lesions and nicks/breaks (at ≥250 μM Pb). Pb was deposited along the cell walls as dark precipitates. At ≤250 μM Pb, the number of mitochondria increased significantly, whereas structural damage in terms of change of shape and disintegration was observed at ≥ 250 μM Pb. Pb reduced the size of nucleoli and induced puff formation (at 250 μM), resulting in complete disintegration/disappearance of nucleolus at 500 μM. The study concludes that Pb inhibited wheat root growth involving an ROS-mediated oxidative damage vis-à-vis the ultrastructural alterations in cell membrane and disruption of mitochondrial and nuclear integrity.  相似文献   

20.
Cell walls isolated from competent streptococci (group H strain Challis) were shown to bind more homologous and heterologous deoxyribonucleic acid (DNA) than noncompetent walls. Heat- and alkali-denatured DNA was not bound by either wall preparation. Pretreatment of cell walls with cetyltrimethylammonium bromide sharply increased the binding of DNA but did not increase transformation of whole cells. Pretreatment of the walls with either sodium dodecylsulfate, deoxyribonuclease and ribonuclease, or with crude competence-provoking factor did not affect the binding of DNA. Antiserum prepared against whole competent cells completely blocked transformation and also inhibited DNA binding to competent cell walls. Adsorption of this antiserum with competent Challis cells removed its blocking action for both binding and transformation. Pretreatment of walls with trypsin and Pronase destroyed their ability to bind DNA. Trypsin treatment also blocked transformation in whole cells. The transforming activity of DNA bound to cell walls was found to be protected from deoxyribonuclease action. Significant differences were observed in the arginine, proline, and phenylalanine content of competent and noncompetent walls. With few exceptions, the amino acids released from competent cell walls by trypsin were several-fold greater than from noncompetent walls. The results indicate that (i) two binding sites exist, one in competent cells only and essential for subsequent transformation, and a second, present in all cells, which is not involved in transformation; (ii) both sites are protein in nature; (iii) the transformation site is blocked by antibody; and (iv) the competent cell wall possesses tryptic-sensitive protein not present in the noncompetent wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号