首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables.  相似文献   

2.

Background

The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of acid and alkaline pretreatments.

Results

The pretreatment pH was the most significant factor affecting both the enzymatic glucose and xylose yields after mild thermal pretreatments at maximum 140°C for 10 min. The maximal enzymatic glucose and xylose yields from the solid, pretreated wheat straw fraction were obtained after pretreatments at the most extreme pH values (pH 1 or pH 13) at the maximum pretreatment temperature of 140°C. Surface response models revealed significantly correlating interactions of the pretreatment pH and temperature on the enzymatic liberation of both glucose and xylose from pretreated, solid wheat straw. The influence of temperature was most pronounced with the acidic pretreatments, but the highest enzymatic monosaccharide yields were obtained after alkaline pretreatments. Alkaline pretreatments also solubilized most of the lignin.

Conclusions

Pretreatment pH exerted significant effects and factor interactions on the enzymatic glucose and xylose releases. Quite extreme pH values were necessary with mild thermal pretreatment strategies (T ≤ 140°C, time ≤ 10 min). Alkaline pretreatments generally induced higher enzymatic glucose and xylose release and did so at lower pretreatment temperatures than required with acidic pretreatments.  相似文献   

3.

Background

Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. The efficacy of the bioconversion process using mixed biomass, however, has not been thoroughly investigated. Considering the seasonal availability of wheat straw and the year round availability of hybrid poplar in the Pacific Northwest, this study aims to determine the impact of mixing wheat straw and hybrid poplar biomass on the overall sugar production via steam pretreatment and enzymatic saccharification.

Results

Steam pretreatment proved to be effective for processing different mixtures of hybrid poplar and wheat straw. Following SO2-catalyzed steam explosion pretreatment, on average 22 % more sugar monomers were recovered using mixed feedstock than either single biomass. Improved sugar recovery with mixtures of poplar and wheat straw continued through enzymatic hydrolysis. After steam pretreatment and saccharification, the mixtures showed 20 % higher sugar yields than that produced from hybrid poplar and wheat straw alone.

Conclusions

Blending hybrid poplar and wheat straw resulted in more monomeric sugar recovery and less sugar degradation. This synergistic effect is attributable to interaction of hybrid poplar’s high acetic acid content and the presence of ash supplied by wheat straw. As a consequence on average 20 % more sugar was yielded by using the different biomass mixtures. Combining hybrid poplar and wheat straw enables sourcing of the lowest cost biomass, reduces seasonal dependency, and results in increasing biofuels and chemicals productivity in a cellulosic biorefinery.
  相似文献   

4.

Aim

In this study, the biological variation for improvement of the nutritive value of wheat straw by 12 Ceriporiopsis subvermispora, 10 Pleurotus eryngii and 10 Lentinula edodes strains was assessed. Screening of the best performing strains within each species was made based on the in vitro degradability of fungal‐treated wheat straw.

Methods and Results

Wheat straw was inoculated with each strain for 7 weeks of solid state fermentation. Weekly samples were evaluated for in vitro gas production (IVGP) in buffered rumen fluid for 72 h. Out of the 32 fungal strains studied, 17 strains showed a significantly higher (< 0·05) IVGP compared to the control after 7 weeks (227·7 ml g?1 OM). The three best Ceriporiopsis subvermispora strains showed a mean IVGP of 297·0 ml g?1 OM, while the three best P. eryngii and L. edodes strains showed a mean IVGP of 257·8 and 291·5 ml g?1 OM, respectively.

Conclusion

Ceriporiopsis subvermispora strains show an overall high potential to improve the ruminal degradability of wheat straw, followed by L. edodes and P. eryngii strains.

Significance and Impact of the Study

Large variation exists within and among different fungal species in the valorization of wheat straw, which offers opportunities to improve the fungal genotype by breeding.  相似文献   

5.
Rice straw was treated with a mixed solution of acetic acid and propionic acid to enhance its biodegradability. The effect of acid concentration, pretreatment time, and the ratio of solid to liquid on the delignification performance of rice straw were investigated. It was found that the optimal conditions for hydrolysis were 0.75 mol/L acid concentration, 2 h pretreatment time and 1:20 solid to liquid ratio. Batch methane fermentation of untreated rice straw, pretreated rice straw, and the hydrolysates (the liquid fraction) of pretreatment were conducted at 35 °C for 30 days, and the results indicated that methane production of rice straw can be enhanced by dilute organic acid pretreatment. Moreover, most of the acid in hydrolysates can also be converted into methane gas.  相似文献   

6.

Aims

The manufacturing processes have been reported to influence the properties of probiotics with potential impact on health properties. The aim was to investigate the effect of different growth media and inactivation methods on the properties of canine‐originated probiotic bacteria alone and in combination mixture.

Methods and Results

Three established dog probiotics, Lactobacillus fermentum VET9A, Lactobacillus plantarum VET14A and Lactobacillus rhamnosus VET16A, and their combination mixture were evaluated for their adhesion to dog mucus. The effect of different growth media, one reflecting laboratory and the other manufacturing conditions, and inactivation methods (95°C, 80°C and UV irradiation) on the mucus adhesion of the probiotic strains was characterized. Evaluation of dog probiotics was supported by cell visualization using transmission electron microscopy (TEM). Higher adhesion percentage was reported for probiotic strains growing in laboratory rather than in manufacturing conditions (P < 0·05). Inactivation by heat (95°C, 80°C) decreased the adhesion properties when strains were cultivated in soy‐based growth media compared with those grown in MRS broth (P < 0·05). TEM observations uncovered differences in cell‐surface components in nonviable forms of probiotic strains as compared with their viable forms.

Conclusions

Manufacturing process conditions such as growth media and pretreatment methods may significantly affect the adhesive ability of the tested strains.

Significance and Impact of the Study

Growth conditions, growth media, pretreatment methods and different probiotic combinations should be carefully considered for quality control of existing probiotics and for identification of new probiotics for dogs. These may also have an impact on health benefits for the host.  相似文献   

7.
Lignocelluloses featuring complicated structure and poor degradability usually require pretreatment before its utilization. In this study, an ultrasonic-assisted pretreatment by using quaternary ammonium hydroxide was introduced to enhance biodegradability of lignocellulosic biomass. The synergistic chemical and mechanical pretreatment were supposed to be responsible for both external surface destruction and internal structure disruption of lignocelluloses. High-efficient lignin removal accompanied with obvious structural (crystallinity) transformation was achieved in the pretreated straws. Process analysis indicated that factors of time, temperature, concentration of solvent, and ultrasound power intensity turned out to be significant for pretreatment, and a 4-fold increased saccharification yield of around 92.4% as compared to untreated straw was obtained from the wheat straw pretreated by 15% solvent at 50 °C for 0.5 h in power intensity 344 W/cm2. All results suggest that the combined chemical and mechanical treatment can significantly improve the bio-accessibility of lignocelluloses, leading to the enhanced utilization efficiency.  相似文献   

8.

Purpose  

Densification, a process used to manufacture pellets in order to increase biomass bulk density, plays a crucial role in the economics of biomass utilization. The Canadian Prairies produce large quantities of agricultural residues each year, in particular wheat straw. This study performs life cycle assessment of wheat straw pellets by evaluating environmental effects of the entire pellet production system comprising feedstock production (on-farm wheat straw production), harvesting, baling, transportation, and the industrial processing involving drying, grinding, pelletizing, and packing in the densification plant. The effects of each process on the environmental performance of wheat straw pellets were investigated.  相似文献   

9.

Purpose  

The aim of this study was to perform a well-to-pump life cycle assessment (LCA) to investigate the overall net energy balance and environmental impact of bioethanol production using Tall Fescue grass straw as feedstock. The energy requirements and greenhouse gas (GHG) emissions were compared to those of gasoline to explore the potential of bioethanol as sustainable fuel.  相似文献   

10.
The enzymatic saccharification of three different feedstocks, rice straw, bagasse and silvergrass, which had been pretreated with different dilute acid concentrations, was studied to verify how enzymatic saccharification was affected by the lignin composition of the raw materials. There was a quantitatively inverse correlation between lignin content and enzymatic digestibility after pretreatment with 1%, 2% and 4% sulfuric acid. The lignin accounted for about 18.8–21.8% of pretreated rice straw, which was less than the 23.1–26.5% of pretreated bagasse and the 21.5–24.1% of pretreated silvergrass. The maximum glucose yield achieved, under an enzyme loading 6.5 FPU g?1 DM for 72 h, was close to 0.8 g glucose/g glucan from the enzymatic hydrolysis of the pretreated rice straw; this was twice that from bagasse and silvergrass. A decrease in initial rate of glucose production was observed in all cases when the raw materials underwent enzymatic saccharification with 4% sulfuric acid pretreatment. It is suggested that the higher acid concentration led to an inhibition of β-glucosidase activity. Fourier transform infrared (FTIR) spectroscopy further indicated the chemical properties of the rice straw and silvergrass become more hydrophilic after pretreatment using 2% of sulfuric acid, but the pretreated bagasse tended to become more hydrophobic. The hydrophilic nature of the pretreated solid residues may increase the inhibitive effects of lignin on the cellulase and this could become very important for raw materials such as silvergrass that contain more lignin.  相似文献   

11.
Phanerochaete chrysosporium is a wood‐rot fungus that is capable of degrading lignin via its lignolytic system. In this study, an environmentally friendly fungal pretreatment process that produces less inhibitory substances than conventional methods was developed using P. chrysosporium and then evaluated by various analytical methods. To maximize the production of manganese peroxidase, which is the primary lignin‐degrading enzyme, culture medium was optimized using response surface methodologies including the Plackett–Burman design and the Box–Behnken design. Fermentation of 100 g of rice straw feedstock containing 35.7 g of glucan (mainly in the form of cellulose) by cultivation with P. chrysosporium for 15 days in the media optimized by response surface methodology was resulted in a yield of 29.0 g of glucan that had an enzymatic digestibility of 64.9% of the theoretical maximum glucose yield. In addition, scanning electronic microscopy, confocal laser scanning microscopy, and X‐ray diffractometry revealed significant microstructural changes, fungal growth, and a reduction of the crystallinity index in the pretreated rice straw, respectively. When the fungal‐pretreated rice straw was used as a substrate for ethanol production in simultaneous saccharification and fermentation (SSF) for 24 h, the ethanol concentration, production yield and the productivity were 9.49 g/L, 58.2% of the theoretical maximum, and 0.40 g/L/h, respectively. Based on these experimental data, if 100 g of rice straw are subjected to fungal pretreatment and SSF, 9.9 g of ethanol can be produced after 96 h, which is 62.7% of the theoretical maximum ethanol yield. Biotechnol. Bioeng. 2009; 104: 471–482 © 2009 Wiley Periodicals, Inc.  相似文献   

12.
The production of extracellular xylanase by a locally isolated strain of Aspergillus tubingensis JP-1 was studied under solid-state fermentation. Among the various agro residues used wheat straw was found to be the best for high yield of xylanase with poor cellulase production. The influence of various parameters such as initial pH, moisture, moistening agents, nitrogen sources, additives, surfactants and pretreatment of substrates were investigated. The production of the xylanase reached a peak in 8 days using untreated wheat straw with modified MS medium, pH 6.0 at 1:5 moisture level at 30 °C. Under optimized conditions yield as high as 6,887 ± 16 U/g of untreated wheat straw was achieved. Crude xylanase was used for enzymatic saccharification of agro-residues like wheat straw, rice bran, wheat bran, sugarcane bagasse and industrial paper pulp. Dilute alkali (1 N NaOH) and acid (1 N H2SO4) pretreatment were found to be beneficial for the efficient enzymatic hydrolysis of wheat straw. Dilute alkali and acid-pretreated wheat straw yielded 688 and 543 mg/g reducing sugar, respectively. Yield of 726 mg/g reducing sugar was obtained from paper pulp after 48 h of incubation.  相似文献   

13.

Introduction  

The aim of the present study was to determine the brain areas associated with fibromyalgia, and whether pretreatment regional cerebral blood flow (rCBF) can predict response to gabapentin treatment.  相似文献   

14.

Background  

Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum), two yeasts (Saccharomyces cerevisiae and Pichia stipitis) and two fungi (Aspergillus niger and Trichoderma reesei) were compared for their (i) ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii) resistance against inhibitors present in lignocellulosic hydrolysates, (iii) their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood). The feedstock hydrolysates were generated in two manners: (i) thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii) a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated.  相似文献   

15.

Background  

Pretreatment chemistry is of central importance due to its impacts on cellulosic biomass processing and biofuels conversion. Ammonia fiber expansion (AFEX) and dilute acid are two promising pretreatments using alkaline and acidic pH that have distinctive differences in pretreatment chemistries.  相似文献   

16.

Background  

Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis.  相似文献   

17.

Background  

Transmission electron tomography is an increasingly common three-dimensional electron microscopy approach that can provide new insights into the structure of subcellular components. Transmission electron tomography fills the gap between high resolution structural methods (X-ray diffraction or nuclear magnetic resonance) and optical microscopy. We developed new software for transmission electron tomography, TomoJ. TomoJ is a plug-in for the now standard image analysis and processing software for optical microscopy, ImageJ.  相似文献   

18.
The efficacy of different concentrations of NaOH (0.25%, 0.50%, 0.75%, and 1.00%) for the pretreatment of rice straw in solid and powder state in enzymatic saccharification and fermentation for the production of bioethanol was evaluated. A greater amount of biomass was recovered through solid-state pretreatment (3.74 g) from 5 g of rice straw. The highest increase in the volume of rice straw powder as a result of swelling was observed with 1.00% NaOH pretreatment (48.07%), which was statistically identical to 0.75% NaOH pretreatment (32.31%). The surface of rice straw was disrupted by the 0.75% NaOH and 1.00% NaOH pretreated samples as observed using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). In Fourier-transform infrared (FT-IR) spectra, absorbance of hydroxyl groups at 1,050 cm?1 due to the OH group of lignin was gradually decreased with the increase of NaOH concentration. The greatest amounts of glucose and ethanol were obtained in 1.00% NaOH solid-state pretreated and powder-state hydrolyzed samples (0.804 g g?1 and 0.379 g g?1, respectively), which was statistically similar to the use of 0.75% NaOH (0.763 g g?1 and 0.358 g g?1, respectively). Thus, solid-state pretreatment with 0.75% NaOH and powder-state hydrolysis appear to be suitable for fermentation and bioethanol production from rice straw.  相似文献   

19.
We developed a new pretreatment process for producing high-efficiency bioethanol from a lignocellulosic biomass. Barley straw was pretreated with sodium hydroxide in a twin-screw extruder for continuous pretreatment. The biomass to ethanol ratio (BTER) for optimal pretreatment conditions was evaluated by response surface methodology. Simultaneous saccharification and fermentation (SSF) was conducted to investigate the BTER with 30 FPU/g cellulose of enzyme and 7% (v/v) yeast (Saccharomyces cerevisiae CHY 1011) using 10% (w/v) pretreated biomass under various pretreatment conditions. The maximum BTER was 73.00% under optimal pretreatment conditions (86.61 °C, 0.58 M, and 84.79 mL/min for temperature, sodium hydroxide concentration, and solution flow rate, respectively) and the experimental BTER was 70.01 ± 0.59%. SSF was performed to investigate the optimal enzyme and biomass dosage. As a result, maximum ethanol concentration and ethanol yield were 46.00 g/L and 77.36% at a loading pretreated biomass of 20% with 30 FPU/g cellulose of the enzyme dosage for barley straw to bioethanol. These results are a significant contribution to the production of bioethanol from barley straw.  相似文献   

20.
A CO2-added ammonia explosion pretreatment was performed for bioethanol production from rice straw. The pretreatment conditions, such as ammonia concentration, CO2 loading level, residence time, and temperature were optimized using response surface methodology. The response for optimization was defined as the glucose conversion rate. The optimized pretreatment conditions resulting in maximal glucose yield (93.6 %) were determined as 14.3 % of ammonia concentration, 2.2 MPa of CO2 loading level, 165.1 °C of temperature, and 69.8 min of residence time. Scanning electron microscopy analysis showed that pretreatment of rice straw strongly increased the surface area and pore size, thus increasing enzymatic accessibility for enzymatic saccharification. Finally, an ethanol yield of 97 % was achieved via simultaneous saccharification and fermentation. Thus, the present study suggests that CO2-added ammonia pretreatment is an appropriate process for bioethanol production from rice straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号