首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of the human cysteinyl leukotriene 2 receptor   总被引:16,自引:0,他引:16  
The contractile and inflammatory actions of the cysteinyl leukotrienes (CysLTs), LTC(4), LTD(4), and LTE(4), are thought to be mediated through at least two distinct but related CysLT G protein-coupled receptors. The human CysLT(1) receptor has been recently cloned and characterized. We describe here the cloning and characterization of the second cysteinyl leukotriene receptor, CysLT(2), a 346-amino acid protein with 38% amino acid identity to the CysLT(1) receptor. The recombinant human CysLT(2) receptor was expressed in Xenopus oocytes and HEK293T cells and shown to couple to elevation of intracellular calcium when activated by LTC(4), LTD(4), or LTE(4). Analyses of radiolabeled LTD(4) binding to the recombinant CysLT(2) receptor demonstrated high affinity binding and a rank order of potency for competition of LTC(4) = LTD(4) LTE(4). In contrast to the dual CysLT(1)/CysLT(2) antagonist, BAY u9773, the CysLT(1) receptor-selective antagonists MK-571, montelukast (Singulair(TM)), zafirlukast (Accolate(TM)), and pranlukast (Onon(TM)) exhibited low potency in competition for LTD(4) binding and as antagonists of CysLT(2) receptor signaling. CysLT(2) receptor mRNA was detected in lung macrophages and airway smooth muscle, cardiac Purkinje cells, adrenal medulla cells, peripheral blood leukocytes, and brain, and the receptor gene was mapped to chromosome 13q14, a region linked to atopic asthma.  相似文献   

2.
The role of leukotriene D4 (LTD4) as a mediator of immediate hypersensitivity reactions in the guinea-pig conjunctiva was examined using a potent, second-generation LTD4 receptor antagonist, MK-571 (also known as L-660,711). The microvascular permeability changes in the guinea-pig conjunctiva following challenge with either LTD4 or antigen were measured through accumulation of intravenously administered 99mtechnetium-labeled albumin. Topical application of MK-571 (up to 2 h pretreatment) significantly inhibited the conjunctival responses to LTD4 (ED50 of 18-60 ng/eye) but not to histamine. The responses to a single topical antigen challenge in ovalbumin-sensitized guinea pigs were significantly inhibited (44%) by topical treatment with MK-571, in contrast to the lack of effect previously observed with prototypic antagonists. The inhibitory effects of MK-571 did not involve an action on conversion of [3H]LTC4 to LTD4 and LTE4. Following a second antigen challenge (24 h after the first), MK-571 inhibited the resultant permeability changes by 78%. Specific histamine H1 and H2 antagonists similarly inhibited the responses to the first and second challenges (63 and 74%, respectively). The present study suggests that LTD4 is involved in conjunctival hypersensitivity reactions and that potent LTD4 receptor antagonists may be of therapeutic value in the treatment of allergic conjunctivitis.  相似文献   

3.
4.
Cysteinyl leukotrienes are potent inflammatory molecules playing a major role in asthma. The involvement of these mediators in hypersensitivity in mice is not well known. This study aimed at elucidating their implication by using MK-571, a cysLT(1)receptor antagonist. Mice were sensitized with a suspension of ovalbumin (8 microg) adsorbed to alum (2 mg) and were challenged with an aerosolized ovalbumin solution (0.5%). Inflammatory cell infiltration in the bronchoalveolar lavage (mostly eosinophils) following antigen challenge was inhibited by dexamethasone (0.1, 1 and 5 mg kg(-1)s.c.) and MK-571 (1, 10, 100 mg kg(-1)i.v.) in a dose-dependent manner. Maximal inhibition was 95% with 5 mg kg(-1)dexamethasone and 90% with 100 mg kg(-1)MK-571. When injected together they showed an additive inhibitory effect on eosinophil infiltration. Bronchial hyperreactivity, measured by the increased pulmonary insufflation pressure to carbachol injections, was also inhibited dose-dependently by MK-571. The EC(50)values for carbachol were of 22.39+/-1.12 microg kg(-1)in sensitized and challenged animals that did not receive MK-571 and increased to 43.65+/-1.10, 50.12+/-1.15 and 83.18+/-1.16 microg kg(-1)in animals treated with 1, 10 and 100 mg kg(-1)MK-571 respectively. Lung microvascular leakage (as measured by Evans blue extravasation) induced by antigen bronchoprovocation was reduced by 22% after treatment with 10 mg kg(-1)MK-571. All these inhibitory effects of MK-571 suggest a role for leukotriene D(4)in this animal model of allergic asthma.  相似文献   

5.
Horses suffer from a respiratory condition, similar to human allergic asthma, that is characterized by severe dyspnea, wheezing, coughing, and mucus production. Mediator substances released during the allergic reaction may contract airways and pulmonary vasculature. Nothing is known of the effects of autacoids and other vasoactive substances on equine pulmonary vessels. Therefore, spiral strips of equine pulmonary vein were prepared in vitro and the effects of histamine (H), 5-hydroxytryptamine (5HT), bradykinin (BK), carbachol (Carb), and phenylephrine (phen) were studied. The order of contractile effectiveness for the agonists on the vein was found to be 5HT greater than H greater than Bk greater than Phen greater than Carb, although H consistently produced the greatest maximal effects. H1-receptors appeared to mediate H contractions while H2-receptors had no measurable effect. 5HT responses were mediated directly by 'D-type' smooth muscle receptors. Bk produced contractions but of a lesser magnitude than either H or 5HT. Varying degrees of tachyphylaxis were observed for each agent. alpha-Adrenergic receptor stimulation by Phen initiated low-magnitude contractions whereas Carb exhibited virtually no activity on the pulmonary vein. Contractile responses of pulmonary veins to various spasmogens may contribute to the equine asthmatic response by raising vascular hydrostatic pressure, thereby enhancing edema formation.  相似文献   

6.
The cysteinyl leukotrienes, leukotriene (LT) C(4), LTD(4), and LTE(4), are lipid mediators that have been implicated in the pathogenesis of several inflammatory processes, including asthma. The human LTD(4) receptor, CysLT(1)R, was recently cloned and characterized. We had previously shown that HL-60 cells differentiated toward the eosinophilic lineage (HL-60/eos) developed specific functional LTD(4) receptors. The present work was undertaken to study the potential modulation of CysLT(1)R expression in HL-60/eos by IL-5, an important regulator of eosinophil function. Here, we report that IL-5 rapidly up-regulates CysLT(1)R mRNA expression, with consequently enhanced CysLT(1)R protein expression and function in HL-60/eos. CysLT(1)R mRNA expression was augmented 2- to 15-fold following treatment with IL-5 (1-20 ng/ml). The effect was seen after 2 h, was maximal by 4 h, and maintained at 8 h. Although CysLT(1)R mRNA was constitutively expressed in undifferentiated HL-60 cells, its expression was not modulated by IL-5 in the absence of differentiation. Differentiated HL-60/eos cells pretreated with IL-5 (10 ng/ml) for 24 h showed enhanced CysLT(1)R expression on the cell surface, as assessed by flow cytometry using a polyclonal anti-CysLT(1)R Ab. They also showed enhanced responsiveness to LTD(4), but not to LTB(4) or platelet-activating factor, in terms of Ca(2+) mobilization, and augmented the chemotactic response to LTD(4). Our findings suggest a possible mechanism by which IL-5 can modulate eosinophil functions and particularly their responsiveness to LTD(4), and thus contribute to the pathogenesis of asthma and allergic diseases.  相似文献   

7.
Endothelin-1-induced contractions of guinea pig tracheal and bronchial strips were dose-dependently attenuated by the amiloride analogues 5-(N-ethyl-N-isopropyl)amiloride (EIPA, 1-10 microM) and 5-(N,N-hexamethylene)amiloride (HMA, 1-10 microM). The calculated Ki values for EIPA and HMA were 0.11 +/- 0.02 microM and 0.06 +/- 0.02 microM in the trachea, and 0.28 +/- 0.11 microM and 0.70 +/- 0.25 microM in the bronchus, respectively. These values are in the same order of magnitude as those reported for inhibition of the Na+/H+ exchange in cells. Amiloride (1-10 microM) was ineffective. These data suggest that activation of the Na+/H+ exchange by ET-1 may be involved in mediating its myotropic action in guinea pig airway smooth muscle.  相似文献   

8.
Prostaglandins (PGs) F2 alpha and D2 are bronchoconstrictor agents which are released under allergic conditions such as asthma. The efficacy and potency of PGF2 alpha and PGD2 differ in some tissues. We compared the effects of these two PGs in sensitized human parenchymal strips. In six experiments, PGF2 alpha 0.1 and 0.3 microM produced greater contractions than PGD2 at the same concentrations. There were no significant differences between the contractions from the two PGs at concentrations of 0.01, 0.03, 1.0-10 microM and the two PGs appeared to be equipotent. We studied the effects of the anti-asthmatic drug theophylline, and its analogue enprofylline, on the contraction caused by these PGs. Theophylline 100 microM caused no change to the cumulative concentration response curves. However, enprofylline 100 microM reduced the PGF2 alpha-induced contractions.  相似文献   

9.
Cysteinyl leukotrienes (CysLTs), slow-reacting substances of anaphylaxis, are lipid mediators known to possess potent proinflammatory action. Pharmacological studies using CysLTs indicate that at least two classes of G protein-coupled receptors (GPCRs), named CysLT(1) and CysLT(2), exist; the former is sensitive and the latter is resistant to the CysLT(1) antagonists currently used to treat asthma. Although the CysLT(1) receptor gene has been recently cloned, the molecular identity of the CysLT(2) receptor has remained elusive. Here we show that the pharmacological profile of an orphan GPCR (PSEC0146) is consistent with that of the CysLT(2) receptor. In human embryonic kidney 293 cells that express the PSEC0146 cDNA, leukotriene C(4) (LTC(4)) and leukotriene D(4) (LTD(4)) induce equal increases in intracellular calcium mobilization; these increases are not affected by CysLT(1) antagonists. Additionally, [(3)H]LTC(4) specifically binds to membranes from COS-1 cells transiently transfected with PSEC0146. Large amounts of the PSEC0146 mRNA are found in human heart, placenta, spleen, and peripheral blood leukocytes but not in the lung and the trachea. Pharmacological feature and expression studies will eventually lead to a better understanding of the classification of CysLT receptors, possibly leading to a reconsideration of the pathological and physiological role of CysLTs.  相似文献   

10.
Cysteinyl leukotrienes (CysLTs) exert potent proinflammatory actions and contribute to many of the symptoms of asthma. Using a model of allergic sensitization and airway challenge with Aspergillus fumigatus (Af), we have found that Th2-type inflammation and airway hyperresponsiveness (AHR) to methacholine (MCh) were associated with increased LTD(4) responsiveness in mice. To explore the importance of increased CysLT signaling in airway smooth muscle function, we generated transgenic mice that overexpress the human CysLT1 receptor (hCysLT(1)R) via the alpha-actin promoter. These receptors were expressed abundantly and induced intracellular calcium mobilization in airway smooth muscle cells from transgenic mice. Force generation in tracheal ring preparations ex vivo and airway reactivity in vivo in response to LTD(4) were greatly amplified in hCysLT(1)R-overexpressing mice, indicating that the enhanced signaling induces coordinated functional changes of the intact airway smooth muscle. The increase of AHR imposed by overexpression of the hCysLT(1)R was greater in transgenic BALB/c mice than in transgenic B6 x SJL mice. In addition, sensitization- and challenge-induced increases in airway responsiveness were significantly greater in transgenic mice than that of nontransgenic mice compared with their respective nonsensitized controls. The amplified AHR in sensitized transgenic mice was not due to an enhanced airway inflammation and was not associated with similar enhancement in MCh responsiveness. These results indicate that a selective hCysLT(1)R-induced contractile mechanism synergizes with allergic AHR. We speculate that hCysLT(1)R signaling contributes to a hypercontractile state of the airway smooth muscle.  相似文献   

11.
With the use of fura 2 measurements in multiple and single cells, we examined whether cysteinyl leukotrienes (CysLT) mediate angiotensin II (ANG II)-evoked increases in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in neonatal rat cardiomyocytes. ANG II-evoked CysLT release peaked at 1 min. The angiotensin type 1 (AT(1)) antagonist losartan, but not the AT(2) antagonist PD-123319, attenuated the elevations in [Ca(2+)](i) and CysLT levels evoked by ANG II. Vasopressin and endothelin-1 increased [Ca(2+)](i) but not CysLT levels. The 5-lipoxygenase (5-LO) inhibitor AA-861 and the CysLT(1)-selective antagonist MK-571 reduced the maximal [Ca(2+)](i) responses to ANG II but not to vasopressin and endothelin-1. While MK-571 reduced the responses to leukotriene D(4) (LTD(4)), the dual CysLT antagonist BAY-u9773 completely blocked the [Ca(2+)](i) elevation to both LTD(4) and LTC(4). These data confirm that ANG II-evoked increases, but not vasopressin- and endothelin-1-evoked increases, in [Ca(2+)](i) involve generation of the 5-lipoxygenase metabolite CysLT. The inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] antagonist 2-aminoethoxydiphenyl borate attenuated the [Ca(2+)](i) responses to ANG II and LTD(4). Thus AT(1) receptor activation by ANG II is linked to CysLT-mediated Ca(2+) release from Ins(1,4,5)P(3)-sensitive intracellular stores to augment direct ANG II-evoked Ca(2+) mobilization in rat cardiomyocytes.  相似文献   

12.
Inflammatory eicosanoids generated by the 5-lipoxygenase (5-LO) pathway of arachidonic acid metabolism are now known to have at least 6 receptors: OXE, which recognizes 5-HETE and 5-oxo-ETE; a putative receptor recognizing a potent 5-oxo-ETE metabolite, FOG(7); the LTB(4) receptors, BLT1 and BLT2; the cysteinyl leukotriene receptors, CysLT(1) and CysLT(2), which recognize leukotrienes LTC(4), LTD(4), LTE(4) and LTF(4). The 5-LO pathway is activated in many diseases and invokes inflammatory responses not affected by glucocorticoids, but therapy with selective BLT1 or CysLT(1) antagonists in asthma has met with variable success. Studies show that 5-LO pathway eicosanoids are not primary mediators in all cases of asthma, but may be especially important in severe persistent asthma, aspirin- and exercise-induced asthma, allergic rhinitis, COPD, idiopathic pulmonary fibrosis, atherosclerosis, atopic dermatitis, acne and ischemia-related organ injury. These disorders appear to involve multiple 5-LO pathway eicosanoids and receptor subtypes, suggesting that inhibition of the pathway at the level of 5-LO may be necessary for maximal efficacy.  相似文献   

13.
The conjunctiva is a mucous membrane that covers the sclera and lines the inside of the eyelids. Throughout the conjunctiva are goblet cells that secrete mucins to protect the eye. Chronic inflammatory diseases such as allergic conjunctivitis and early dry eye lead to increased goblet cell mucin secretion into tears and ocular surface disease. The purpose of this study was to determine the actions of the inflammatory mediators, the leukotrienes and the proresolution resolvins, on secretion from cultured rat and human conjunctival goblet cells. We found that both cysteinyl leukotriene (CysLT) receptors, CysLT(1) and CysLT(2,) were present in rat conjunctiva and in rat and human cultured conjunctival goblet cells. All leukotrienes LTB(4), LTC(4), LTD(4), and LTE(4), as well as PGD(2), stimulated goblet cell secretion in rat goblet cells. LTD(4) and LTE(4) increased the intracellular Ca(2+) concentration ([Ca(2+)](i)), and LTD(4) activated ERK1/2. The CysLT(1) receptor antagonist MK571 significantly decreased LTD(4)-stimulated rat goblet cell secretion and the increase in [Ca(2+)](i). Resolvins D1 (RvD1) and E1 (RvE1) completely reduced LTD(4)-stimulated goblet cell secretion in cultured rat goblet cells. LTD(4)-induced secretion from human goblet cells was blocked by RvD1. RvD1 and RvE1 prevented LTD(4)- and LTE(4)-stimulated increases in [Ca(2+)](i), as well as LTD(4) activation of ERK1/2. We conclude that cysteinyl leukotrienes stimulate conjunctival goblet cell mucous secretion with LTD(4) using the CysLT(1) receptor. Stimulated secretion is terminated by preventing the increase in [Ca(2+)](i) and activation of ERK1/2 by RvD1 and RvE1.  相似文献   

14.
Several nonsedating histamine H1-receptor antagonists are associated with torsades de pointes ventricular tachycardia. The objectives of this study were to: (i) compare electrocardiographic, monophasic action potential, and arrhythmogenic effects of sedating and nonsedating H1-receptor antagonists, and (ii) identify correlates of drug-induced torsades de pointes in an isolated ventricle model. Isolated, electrically paced (1-3 Hz) rabbit ventricles were Langendorff-perfused with either drug-free Tyrode's solution or one of the following: (i) the sedating H1-receptor antagonist hydroxyzine (0.1-30 microM), (ii) cetirizine, a nonsedating metabolite of hydroxyzine (1-300 microM), and (iii) the nonsedating, putatively arrhythmogenic H1-receptor antagonist astemizole (0.1-30 microM). Volume conducted electrocardiographic signals and monophasic action potentials from the periapical left ventricular endocardium and epicardium were recorded. There were no apparent changes in control (n = 15) or hydroxyzine-perfused (n = 7) hearts. Cetirizine (n = 13) produced a mild biphasic electrocardiographic QT interval prolongation and was associated with early afterdepolarizations, but not with torsades de pointes. Astemizole (n = 11) lengthened QT intervals, and at high concentration (30 microM) induced torsades de pointes in 10 of 11 hearts (P < 0.001 vs. all other groups). These findings are consistent with previously reported repolarizing current inhibition by cetirizine, but may additionally indicate "compensatory" inhibition of inward currents at higher concentrations. By contrast, astemizole-induced changes are consistent with unopposed repolarizing current inhibition.  相似文献   

15.
Arachidonic acid (AA) and ovalbumin (OA) were used to induce contractions of sensitized guinea pig tracheal spiral (indomethacin-pretreated) and lung parenchymal strip preparations. This model was used to examine the properties of three leukotriene (LT) D4 antagonists and a platelet-activating factor (PAF)-acether receptor antagonist. The three LTD4 antagonists, L-649,923, FPL 57231, and LY163443, inhibited AA-induced contractions of indomethacin-pretreated tracheal spirals selectively. The PAF-acether antagonist, L-652,731, did not inhibit AA-induced contractions of either trachea or parenchyma. This confirmed that AA-induced contractions of trachea involved release and activity of LTD4. The LTD4 antagonists and L-652,731 partially inhibited OA-induced contractions of both trachea and parenchyma. When L-649,923 and L-652,731 or FPL 57231 and L-652,731 were combined, an additive inhibitory effect on OA-induced contractions was observed. When LY163443 and L-652,731 were combined, the inhibitory effect was synergistic. This may be due to the additional effect of LY163443 to inhibit phosphodiesterase. Total inhibition of OA-induced contractions was obtainable with relatively low concentrations when a LTD4 and PAF-acether antagonist were combined. These results suggested that LTD4 and PAF-acether may be the two major mediators in our model of allergic bronchospasm. The LTD4 and PAF-acether antagonists had the capacity to decrease baseline tone, even on tissues that were already relaxed with indomethacin, suggesting that LTD4 and PAF-acether may contribute to intrinsic tone in airway smooth muscle.  相似文献   

16.
Cysteinyl leukotrienes (CysLTs) play an important role in eosinophilic airway inflammation. In addition to their direct chemotactic effects on eosinophils, indirect effects have been reported. Eotaxin is a potent eosinophil-specific chemotactic factor produced mainly by fibroblasts. We investigated whether CysLTs augment eosinophilic inflammation via eotaxin production by fibroblasts. Leukotriene (LT)C(4) alone had no effect on eotaxin production by human fetal lung fibroblasts (HFL-1). However, LTC(4) stimulated eotaxin production by IL-13-treated fibroblasts, thereby indirectly inducing eosinophil sequestration. Unstimulated fibroblasts did not respond to LTC(4), but coincubation or preincubation of fibroblasts with IL-13 altered the response to LTC(4). To examine the mechanism(s) involved, the expression of CysLT1R in HFL-1 was investigated by quantitative real-time PCR and flow cytometry. Only low levels of CysLT1R mRNA and no CysLT1R protein were expressed in unstimulated HFL-1. In contrast, stimulation with IL-13 at a concentration of 10 ng/ml for 24 h significantly up-regulated both CysLT1R mRNA and protein expression in HFL-1. The synergistic effect of LTC(4) and IL-13 on eotaxin production was abolished by CysLT1R antagonists pranlukast and montelukast. These findings suggest that IL-13 up-regulates CysLT1R expression, which may contribute to the synergistic effect of LTC(4) and IL-13 on eotaxin production by lung fibroblasts. In the Th2 cytokine-rich milieu, such as that in bronchial asthma, CysLT1R expression on fibroblasts might be up-regulated, thereby allowing CysLTs to act effectively and increase eosinophilic inflammation.  相似文献   

17.
18.
Cysteinyl leukotrienes activate the cysteinyl leukotriene type 1 receptor (CysLT1R) to regulate numerous cell functions important in inflammatory processes and diseases such as asthma. Despite its physiologic importance, no studies to date have examined the regulation of CysLT1R signaling or trafficking. We have established model systems for analyzing recombinant human CysLT1R and found regulation of internalization and signaling of the CysLT1R to be unique among G protein-coupled receptors. Rapid and profound LTD4-stimulated internalization was observed for the wild type (WT) CysLT1R, whereas a C-terminal truncation mutant exhibited impaired internalization yet signaled robustly, suggesting a region within amino acids 310-321 as critical to internalization. Although overexpression of WT arrestins significantly increased WT CysLT1R internalization, expression of dominant-negative arrestins had minimal effects, and WT CysLT1R internalized in murine embryonic fibroblasts lacking both arrestin-2 and arrestin-3, suggesting that arrestins are not the primary physiologic regulators of CysLT1Rs. Instead, pharmacologic inhibition of protein kinase C (PKC) was shown to profoundly inhibit CysLT1R internalization while greatly increasing both phosphoinositide (PI) production and calcium mobilization stimulated by LTD4 yet had almost no effect on H1 histamine receptor internalization or signaling. Moreover, mutation of putative PKC phosphorylation sites within the CysLT1R C-tail (CysLT1RS(313-316)A) reduced receptor internalization, increased PI production and calcium mobilization by LTD4, and significantly attenuated the effects of PKC inhibition. These findings characterized the CysLT1R as the first G protein-coupled receptor identified to date in which PKC is the principal regulator of both rapid agonist-dependent internalization and rapid agonist-dependent desensitization.  相似文献   

19.
Multiple binding sites on the N-methyl-D-aspartate (NMDA) receptor complex were examined using rat brain synaptic membranes treated with Triton X-100. Binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801), a noncompetitive NMDA antagonist, in the presence of 10 microM L-glutamate not only was inhibited by different types of antagonists, such as 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, 7-chlorokynurenate, and 6,7-dichloroquinoxaline-2,3-dione (DCQX), but also was abolished by non-NMDA antagonists, including 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. The inhibition of [3H]MK-801 binding by these compounds was invariably reversed or attenuated by addition of 10 microM glycine. Among these novel antagonists with an inhibitory potency on [3H]MK-801 binding, only DCQX abolished [3H]glycine binding without inhibiting [3H]glutamate and [3H](+-)-3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate bindings. Other antagonists examined were all effective as displacers of the latter two bindings. These results suggest that DCQX is an antagonist highly selective to the strychnine-insensitive glycine binding sites with a relatively high affinity.  相似文献   

20.
Cysteinyl leukotrienes (CysLTs) are potent proinflammatory mediators and are considered to play a key role in inflammatory diseases such as asthma. Antagonists targeting the receptor of CysLTs (CysLT1) are currently used as antiasthmatic drugs. CysLTs have also been implicated in other inflammatory reactions. In this study, we report that in experimental autoimmune encephalomyelitis animals, CysLT1 is upregulated in immune tissue and the spinal cord, and CysLT levels in the blood and cerebrospinal fluid are also higher than in normal mice. Two clinically used antiasthma drugs, montelukast and zafirlukast, both targeting CysLT1, effectively block the CNS infiltration of inflammatory cells and thus reduce the incidence, peak severity, and cumulative clinical scores. Further study indicated that CysLT1 signaling does not affect the differentiation of pathogenic T helper cells. It might affect the pathogenesis of experimental autoimmune encephalomyelitis by increasing the secretion of IL-17 from myelin oligodendrocyte glycoprotein-specific T cells, increasing the permeability of the blood-brain barrier and inducing chemotaxis of T cells. These effects can be blocked by CysLT1 antagonists. Our findings indicate that the antiasthmatic drugs against CysLT1 can also be used to treat multiple sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号