首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite its immense size, logistical and methodological constraints have largely limited microbiological investigations of the subseafloor basement biosphere. In this study, a unique sampling system was used to collect fluids from the subseafloor basaltic crust via a Circulation Obviation Retrofit Kit (CORK) observatory at Integrated Ocean Drilling Program borehole 1301A, located at a depth of 2667 m in the Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Here, a fluid delivery line directly accesses a 3.5 million years old basalt-hosted basement aquifer, overlaid by 262 m of sediment, which serves as a barrier to direct exchange with bottom seawater. At an average of 1.2 × 104 cells ml−1, microorganisms in borehole fluids were nearly an order of magnitude less abundant than in surrounding bottom seawater. Ribosomal RNA genes were characterized from basement fluids, providing the first snapshots of microbial community structure using a high-integrity fluid delivery line. Interestingly, microbial communities retrieved from different CORKs (1026B and 1301A) nearly a decade apart shared major community members, consistent with hydrogeological connectivity. However, over three sampling years, the dominant gene clone lineage changed from relatives of Candidatus Desulforudis audaxviator within the bacterial phylum Firmicutes in 2008 to the Miscellaneous Crenarchaeotic Group in 2009 and a lineage within the JTB35 group of Gammaproteobacteria in 2010, and statistically significant variation in microbial community structure was observed. The enumeration of different phylogenetic groups of cells within borehole 1301A fluids supported our observation that the deep subsurface microbial community was temporally dynamic.  相似文献   

2.
The subseafloor microbial habitat associated with typical unsedimented mid-ocean-ridge hydrothermal vent ecosystems may be limited by the availability of fixed nitrogen, inferred by the low ammonium and nitrate concentrations measured in diffuse hydrothermal fluid. Dissolved N2 gas, the largest reservoir of nitrogen in the ocean, is abundant in deep-sea and hydrothermal vent fluid. In order to test the hypothesis that biological nitrogen fixation plays an important role in nitrogen cycling in the subseafloor associated with unsedimented hydrothermal vents, degenerate PCR primers were designed to amplify the nitrogenase iron protein gene nifH from hydrothermal vent fluid. A total of 120 nifH sequences were obtained from four samples: a nitrogen-poor diffuse vent named marker 33 on Axial Volcano, sampled twice over a period of 1 year as its temperature decreased; a nitrogen-rich diffuse vent near Puffer on Endeavour Segment; and deep seawater with no detectable hydrothermal plume signal. Subseafloor nifH genes from marker 33 and Puffer are related to anaerobic clostridia and sulfate reducers. Other nifH genes unique to the vent samples include proteobacteria and divergent ARCHAEA: All of the nifH genes from the deep-seawater sample are most closely related to the thermophilic, anaerobic archaeon Methanococcus thermolithotrophicus (77 to 83% amino acid similarity). These results provide the first genetic evidence of potential nitrogen fixers in hydrothermal vent environments and indicate that at least two sources contribute to the diverse assemblage of nifH genes detected in hydrothermal vent fluid: nifH genes from an anaerobic, hot subseafloor and nifH genes from cold, oxygenated deep seawater.  相似文献   

3.
Hyperthermophilic iron reducers are common in hydrothermal chimneys found along the Endeavour Segment in the northeastern Pacific Ocean based on culture‐dependent estimates. However, information on the availability of Fe(III) (oxyhydr) oxides within these chimneys, the types of Fe(III) (oxyhydr) oxides utilized by the organisms, rates and environmental constraints of hyperthermophilic iron reduction, and mineral end products is needed to determine their biogeochemical significance and are addressed in this study. Thin‐section petrography on the interior of a hydrothermal chimney from the Dante edifice at Endeavour showed a thin coat of Fe(III) (oxyhydr) oxide associated with amorphous silica on the exposed outer surfaces of pyrrhotite, sphalerite, and chalcopyrite in pore spaces, along with anhydrite precipitation in the pores that is indicative of seawater ingress. The iron sulfide minerals were likely oxidized to Fe(III) (oxyhydr) oxide with increasing pH and Eh due to cooling and seawater exposure, providing reactants for bioreduction. Culture‐dependent estimates of hyperthermophilic iron reducer abundances in this sample were 1740 and 10 cells per gram (dry weight) of material from the outer surface and the marcasite‐sphalerite‐rich interior, respectively. Two hyperthermophilic iron reducers, Hyperthermus sp. Ro04 and Pyrodictium sp. Su06, were isolated from other active hydrothermal chimneys on the Endeavour Segment. Strain Ro04 is a neutrophilic (pHopt 7–8) heterotroph, while strain Su06 is a mildly acidophilic (pHopt 5), hydrogenotrophic autotroph, both with optimal growth temperatures of 90–92 °C. Mössbauer spectroscopy of the iron oxides before and after growth demonstrated that both organisms form nanophase (<12 nm) magnetite [Fe3O4] from laboratory‐synthesized ferrihydrite [Fe10O14(OH)2] with no detectable mineral intermediates. They produced up to 40 mm Fe2+ in a growth‐dependent manner, while all abiotic and biotic controls produced <3 mm Fe2+. Hyperthermophilic iron reducers may have a growth advantage over other hyperthermophiles in hydrothermal systems that are mildly acidic where mineral weathering at increased temperatures occurs.  相似文献   

4.
Volcanic ocean crust contains a global chemosynthetic microbial ecosystem that impacts ocean productivity, seawater chemistry and geochemical cycling. We examined the mineralogical effect on community structure in the aquifer ecosystem by using a four-year in situ colonization experiment with igneous minerals and glasses in Integrated Ocean Drilling Program Hole 1301A on the Juan de Fuca Ridge. Microbial community analysis and scanning electron microscopy revealed that olivine phases and iron-bearing minerals bore communities that were distinct from iron-poor phases. Communities were dominated by Archaeoglobaceae, Clostridia, Thermosipho, Desulforudis and OP1 lineages. Our results suggest that mineralogy determines microbial composition in the subseafloor aquifer ecosystem.  相似文献   

5.
A culture‐independent molecular phylogenetic survey was carried out for a bacterial and archaeal community of a mineralized crust coating a sulphide spire, which was collected from the Edmond vent field (23° S, 69° E, 3300 m depth) on the Central Indian Ridge. Small‐subunit rRNA genes (16S rDNA) were amplified from environmental DNA by PCR utilizing Bacteria‐specific, and Archaea‐specific 16S rDNA primers. PCR products were cloned and 26 bacterial and nine archaeal unique sequence types (phylotypes) were identified from 150 clones analysed by restriction fragment length polymorphism, representing eight and four distinct lineages, respectively. The majority (>90%) of the bacterial phylotypes group with the ?‐Proteobacteria and confirms the global prevalence of ?‐Proteobacteria in deep‐sea hydrothermal environments. Among the ?‐Proteobacteria, >40% of the phylotypes were closely related to the recently isolated deep‐sea vent thermophilic chemolithoautotrophic sulphur‐reducer, Nautilia lithotrophica. A single bacterial sequence was nearly identical (99% similarity) to the thermophilic hydrogen‐oxidizing Hydrogenobacter thermolithotrophum, and is the first report of Hydrogenobacter at deep‐sea hydrothermal vents. A majority (97%) of the archaeal phylotypes grouped with the ‘Deep‐sea Hydrothermal Vent Euryarchaeotal Group’, a phylogenetic lineage of uncultured Archaea that have only been reported from other deep‐sea hydrothermal vents on the Mid‐Atlantic Ridge, East Pacific Rise, Juan de Fuca Ridge, Isu–Ogasawara Arc, Okinawa Trough and the Manus Basin. A single sequence was closely related to the hyperthermophilic sulphur‐reducing Thermococcales frequently found in diverse deep‐sea vent environments. Scanning electron micrographs of the mineralized crust reveal abundant filamentous, rod and coccoidal forms encased in sulphur and sulphide mineral precipitate, suggesting that the thermophilic chemolithoautorophs and sulphide‐producing heterotrophs may influence the architecture and sulphur cycling of the sulphide spire.  相似文献   

6.
The prokaryotic phylogenetic diversity was determined for a sample associated with an in situ growth chamber deployed for 5 days on a Mid-Atlantic Ridge hydrothermal vent (23 degrees 22'N, 44 degrees 57'W). The DNA was extracted from the sample and the 16S rDNA amplified by PCR. No Archaea were detected in the sample. Eighty-seven clones containing bacterial 16S rDNA inserts were selected. Based on restriction fragment length polymorphism analysis, 47 clones were unique, however, based on comparative sequence analysis some of these were very similar, and thus only 22 clones were selected for full sequence and phylogenetic analysis. The phylotypes were dominated by epsilon-Proteobacteria (66%). The remainder formed a novel lineage within the Proteobacteria (33%). One clone formed a distinct deeply branching lineage, and was a distant relative of the Aquificales. This report further expands the growing evidence that epsilon-Proteobacteria are important members in biogeochemical cycling at deep-sea hydrothermal ecosystems, participating as epibionts and free living bacteria.  相似文献   

7.
8.
Deep-ocean hydrothermal-vent environments are rich in heavy metals and metalloids and present excellent sites for the isolation of metal-resistant microorganisms. Both metalloid-oxide-resistant and metalloid-oxide-reducing bacteria were found. Tellurite- and selenite-reducing strains were isolated in high numbers from ocean water near hydrothermal vents, bacterial films, and sulfide-rich rocks. Growth of these isolates in media containing K(2)TeO(3) or Na(2)SeO(3) resulted in the accumulation of metallic tellurium or selenium. The MIC of K(2)TeO(3) ranged from 1,500 to greater than 2,500 micro g/ml, and the MIC of Na(2)SeO(3) ranged from 6,000 to greater than 7,000 micro g/ml for 10 strains. Phylogenetic analysis of 4 of these 10 strains revealed that they form a branch closely related to members of the genus Pseudoalteromonas, within the gamma-3 subclass of the Proteobacteria. All 10 strains were found to be salt tolerant, pH tolerant, and thermotolerant. The metalloid resistance and morphological, physiological, and phylogenetic characteristics of newly isolated strains are described.  相似文献   

9.
Hydrothermal plumes are widely distributed throughout the global spreading ridges, yet few of them are microbiologically explored. The ultraslow-spreading ridges, recently recognized as a unique, new class of mid-ocean-ridge system, have provided surprises and new insights in hydrothermal system research. A suite of water column samples including both hydrothermal plume samples and ambient seawater were collected at different depths from the ultraslow-spreading Southwest Indian Ridge (SWIR) in 2010. We use molecular approaches such as clone libraries, denaturing gradient gel electrophoresis (DGGE) and quantitative PCR to determine microbial community compositions and their spatial variability within the hydrothermal plume and seawater. Phylogenetic analysis showed that plume samples were mainly dominated by members of α-Proteobacteria and γ-Proteobacteria and members of marine group I group within the Crenarchaeota. Within the hydrothermal plume, archaeal populations were spatially homogeneous, while bacterial compositions were heterogeneous and remarkably distinct at different depths. Moreover, several lineages, closely related to known Mn(II) oxidizers were found to be abundant and even predominant within the plume bacterial communities. DGGE band patterns showed that there was no significant difference in microbial compositions between the samples of hydrothermal plume and ambient seawater. Taken together, we inferred that microbial communities in the SWIR hydrothermal plumes were sourced from ambient seawater rather than from seafloor vent-derived niches. This is the first report on the characteristics of microbial community structures in hydrothermal plume and ambient seawater in the Southwest Indian Ridge.  相似文献   

10.
The phylogenetic diversity of sulfate-reducing prokaryotes occurring in active deep-sea hydrothermal vent chimney structures was characterized based on the deduced amino acid sequence analysis of the polymerase chain reaction-amplified dissimilatory sulfite reductase (DSR) gene. The DSR genes were successfully amplified from microbial assemblages of the chimney structures, derived from three geographically and geologically distinct deep-sea hydrothermal systems in the Central Indian Ridge (CIR), in the Izu-Bonin Arc (IBA), and the Okinawa Trough (OT), respectively. Phylogenetic analysis revealed seven major phylogenetic groups. More than half of the clones from the CIR chimney structure were related to DSR amino acid sequences of the hyperthermophilic archaeal members of the genus Archaeoglobus, and those of environmental DSR clones within the class Thermodesulfobacteria. From the OT chimney structure, a different group was obtained, which comprised a novel, deep lineage associated with the DSRs of the thermophilic sulfate-reducing bacterium Thermodesulfovibrio. Most of the DSR clones from the IBA chimney structure were phylogenetically associated with the delta-proteobacterial sulfate-reducing bacteria represented by the genus Desulfobulbus. Sequence analysis of DSR clones demonstrated a diverse sulfate-reducing prokaryotic community in the active deep-sea hydrothermal chimney structures.  相似文献   

11.
【目的】热液羽流影响区包括热液羽流流经区域和羽流中性浮力层下方受热液颗粒物影响的区域。随着热液羽流的演化,热液羽流影响区内微生物群落的结构组成也会发生相应的变化,但是,由于观测和取样困难等原因,迄今热液羽流影响区不同空间位置微生物的群落结构特征及其在月际尺度上的演化尚不清楚。【方法】中国大洋49航次在卧蚕1号热液喷口东南侧300 m处投放了沉积物捕获器锚系,在不同离底高度开展了为期18个月的观测和时序采水。本文采用Illumina MiSeq高通量测序技术对水样中的微生物类群进行测序分析,结合现场实时探测的浊度异常资料,研究卧蚕热液区附近中性浮力羽流和热液颗粒沉降区细菌群落结构的特征和演化及其影响因素。【结果】结果表明,样品中细菌群落以γ-变形菌纲(Gammaproteobacteria)、弯曲菌纲(Camplylobacteria)、α-变形菌纲(Alphaproteobacteria)、拟杆菌纲(Bacteroidia)、梭菌纲(Clostridia)和脱硫叶菌纲(Desulfobulbia)为主。在时间上,优势类群的相对丰度随浊度起伏发生变化,当浊度异常值升高时,弯曲菌纲相对丰度...  相似文献   

12.
The vertical distribution of culturable anoxygenic phototrophic bacteria was investigated at five sites at or near the Juan de Fuca Ridge in the Pacific Ocean. Twelve similar strains of obligately aerobic phototrophic bacteria were isolated in pure culture, from depths ranging from 500 to 2,379 m below the surface. These strains appear morphologically, physiologically, biochemically, and phylogenetically similar to Citromicrobium bathyomarinum strain JF-1, a bacterium previously isolated from hydrothermal vent plume waters. Only one aerobic phototrophic strain was isolated from surface waters. This strain is morphologically and physiologically distinct from the strains isolated at deeper sampling locations, and phylogenetic analysis indicates that it is most closely related to the genus Erythrobacter. Phototrophs were cultivated from three water casts taken above vents but not from two casts taken away from active vent sites. No culturable anaerobic anoxygenic phototrophs were detected. The photosynthetic apparatus was investigated in strain JF-1 and contains light-harvesting I and reaction center complexes, which are functional under aerobic conditions.  相似文献   

13.
【目的】探索南大西洋热液环境中的硫氧化细菌多样性并研究其硫氧化特性。【方法】通过富集培养和分离纯化获得硫氧化细菌,利用变性梯度凝胶电泳(DGGE)分析富集菌群组成结构,采用离子色谱法对获得的硫氧化细菌硫氧化特性进行检测。【结果】从南大西洋深海环境样品中共分离到48株菌,分属于alpha-Proteobacteria(28株,58.3%)、Actinobacteria(11株,22.9%)和gama-Proteobacteria(9株,18.8%)共3个门,其中Thalassospira、Martelella和Microbacterium为优势属。DGGE结果表明深海热液环境样品中微生物多样性丰富且不同站位存在差异。硫氧化特性研究结果表明,约60%的分离菌株具有硫氧化能力,可以氧化S_2O_3~(2–)生成SO_4~(2–)。获得一株硫氧化能力较强的潜在新种L6M1-5,在实验条件下可高效氧化S_2O_3~(2–),最大氧化速率可达0.56 mmol/(L·h)。【结论】南大西洋深海热液环境中可培养硫氧化细菌多样性丰富,为研究热液环境中的硫循环过程提供了实验材料和理论参考;同时高效硫氧化菌的获得,为工业化含硫废水的处理提供了良好的菌种资源。  相似文献   

14.
15.
为了解青枯病与黑胫病混发烟株茎秆组织的微生物菌群组成,该文采用Illumina Miseq高通量测序技术研究了青枯病与黑胫病混发烟株发病茎秆和健康烟株未发病茎秆组织的真菌、细菌群落结构与多样性.结果表明:(1)发病茎秆组织中真菌群落丰富度与多样性较健康茎秆组织低,细菌群落丰富度与多样性较健康茎秆组织高.(2)健康茎秆组...  相似文献   

16.
Soils contaminated with crude oil are rich sources of enzymes suitable for both degradation of hydrocarbons through bioremediation processes and improvement of crude oil during its refining steps. Due to the long term selection, crude oil fields are unique environments for the identification of microorganisms with the ability to produce these enzymes. In this metagenomic study, based on Hiseq Illumina sequencing of samples obtained from a crude oil field and analysis of data on MG‐RAST, Actinomycetales (9.8%) were found to be the dominant microorganisms, followed by Rhizobiales (3.3%). Furthermore, several functional genes were found in this study, mostly belong to Actinobacteria (12.35%), which have a role in the metabolism of aliphatic and aromatic hydrocarbons (2.51%), desulfurization (0.03%), element shortage (5.6%), and resistance to heavy metals (1.1%). This information will be useful for assisting in the application of microorganisms in the removal of hydrocarbon contamination and/or for improving the quality of crude oil. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:638–648, 2016  相似文献   

17.
We examined eukaryote genetic diversity in the hydrothermal environments of Lassen Volcanic National Park (LVNP), Northern California. We sampled hydrothermal areas of the Bumpass Hell, Sulfur Works, Devil's Kitchen, and Boiling Springs Lake sites, all of which included diverse acidic pools, mud pots, and streams with visible algal mats and biofilms. Temperatures varied from 15 to 85 degrees C and pH from 1.7 to 5.8. DNA extraction methods compared by denaturing gradient gel electrophoresis fingerprinting exhibited similar patterns, and showed limited diversity of eukaryotic small subunit (SSU) rRNA genes compared with prokaryotes. We successfully amplified eukaryotic SSU rRNA genes from most environments up to 68 degrees C. Cloned rDNA sequences reveal acidophilic protists dominate eukaryotes in LVNP hydrothermal environments. Most sites showed phototrophic assemblages dominated by chlorophytes and stramenopiles (diatoms and chrysophytes). Heterotrophic taxa, though less abundant, included diverse alveolates (ciliates), amoebae, and flagellates. Fungi were also found at most sites, and metazoans (hexapods, nematodes, platyhelminths) were sometimes detected in less acidic environments, especially in algal mats. While many cloned rDNA sequences showed 95%-99% identity to known acidophilic isolates or environmental clones from other acidic sites (Rio Tinto), sequence diversity generally declined both with decreasing pH and increasing temperature, and both were controlling physical variables on the abundance and distribution of organisms at our sites. However, a pool at 68 degrees C with pH 1.7 yielded the greatest number of distinct sequences. While some were likely contaminants from nearby cooler sites, we suggest that Lassen's acidic hydrothermal features may harbor novel protists.  相似文献   

18.
南海西沙海槽表层沉积物微生物多样性   总被引:9,自引:1,他引:8  
李涛  王鹏  汪品先 《生态学报》2008,28(3):1166-1173
利用非培养的分子技术研究了西沙海槽表层沉积物中的微生物群落.沉积物中扩增的古菌16S rDNA 序列分属两个大类:泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota).以Marine Crenarchaeotic GroupⅠ (古菌16S rDNA文库的49.2%)和Terrestrial Miscellaneous Euryarchaeotal Group (16.9%)为主要类群;其余为Marine Benthic Group B (9.7%)、 Marine Benthic Group A (4%)、 Marine Benthic Group D (1.6%)、Novel Euryarchaeotic Group (0.8%)和 C3(0.8%).细菌克隆子多样性明显高于古菌,16S rDNA序列分别来自变形杆菌(Proteobacteria)(细菌16S rDNA文库的30.5%)、浮霉菌(Planctomycetes)(20.3%)、放线菌(Actinobacteria)(14.4%)、厚壁菌(Firmicutes)(15.3%)、屈桡杆菌(Chloroflexi)(8.5%)、酸杆菌(Acidobacteria)(3.4%)、candidate division OP8 (2.5%)、拟杆菌/绿菌(Bacterioidetes/Chlorobi)(1.7%)和疣微菌(Verrucomicrobia)(1.7%).变形杆菌为优势类群(包括Alpha-和Delta-Proteobacteria亚群).多数克隆子为未培养细菌和古菌.结果表明南海表层沉积物中蕴含大量未知的微生物资源.  相似文献   

19.
Li T  Wang P  Wang P X 《农业工程》2008,28(3):1166-1173
Microbial communities were obtained from the surface sediments of the Xisha Trough using the culture-independent technique. The characteristics of the 16S rDNA gene amplified from the sediments indicated that archaeal clones could be grouped into Euryarchaeota and Crenarchaeota, respectively. Two archaeal groups, Marine Crenarchaeotic GroupI and Terrestrial Miscellaneous Euryarchaeotal Group, were the most dominant archaeal 16S rDNA gene components in the sediments. The remaining components were related to the members of Marine Benthic Group B, Marine Benthic Group A, Marine Benthic Group D, Novel Euryarchaeotic Group and C3. The bacterial clones exhibited greater diversity than the archaeal clones with the 16S rDNA gene sequences from the members of Proteobacteria, Planctomycetes, Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, candidate division OP8, Bacterioidetes/Chlorobi and Verrucomicrobia. Most of these lineages represented uncultured microorganisms. The result suggests that a vast amount of microbial resource in the surface sediments of the South China Sea has not been known.  相似文献   

20.
Rapid growth of microbial sulphur mats have repeatedly been observed during oceanographic cruises to various deep-sea hydrothermal vent sites. The microorganisms involved in the mat formation have not been phylogenetically characterized, although the production of morphologically similar sulphur filaments by a Arcobacter strain coastal marine has been documented. An in situ collector deployed for 5 days at the 13 degrees N deep-sea hydrothermal vent site on the East Pacific Rise (EPR) was rapidly colonized by a filamentous microbial mat. Microscopic and chemical analyses revealed that the mat consisted of a network of microorganisms embedded in a mucous sulphur-rich matrix. Molecular surveys based on 16S rRNA gene and aclB genes placed all the environmental clone sequences within the Epsilonproteobacteria. Although few 16S rRNA gene sequences were affiliated with that of cultured organisms, the majority was related to uncultured representatives of the Arcobacter group (< or = 95% sequence similarity). A probe designed to target all of the identified lineages hybridized with more than 95% of the mat community. Simultaneous hybridizations with the latter probe and a probe specific to Arcobacter spp. confirmed the numerical dominance of Arcobacter-like bacteria. This study provides the first example of the prevalence and ecological significance of free-living Arcobacter at deep-sea hydrothermal vents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号