首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A second example of insertion of a water molecule into the helical backbone of an apolar peptide is presented here and compared to a similar occurrence in a longer peptide with the same type of sequence of residues, i.e., Boc-Aib-(Ala-Leu-Aib)3-OMe. The backbone of the title compound assumes an approximate 3(10)-helical form with three 4----1 hydrogen bonds. In the place of a fourth 4----1 hydrogen bond, a water molecule is inserted between O(1) and N(4), and acts as a bridge by forming hydrogen bonds N(4) ... W(1) (2.95 A) and W(1) ... O(1) (2.81 A). The water molecule participates in a third hydrogen bond with a neighboring peptide molecule, W(1) ... O(4) (2.91 A). The insertion of the water molecule causes the apolar peptide to mimic an amphiphilic helix. Crystals grown from ethyl acetate/petroleum ether (reported here) or from methanol/water solution are in space group P2(1)2(1)2(1) with a = 12.024(4) A, b = 15.714(6) A, c = 21.411(7) A, Z = 4 and dcalc = 1.124 g/cm3 for C32H58N6O9.H2O. The overall agreement factor R is 6.3% for 2707 reflections observed with intensities greater than 3 sigma(F) and the resolution is 0.90 A.  相似文献   

2.
The isomeric decapeptides Boc-Aib-Ala-Leu-Ala-Aib-Aib-Leu-Ala-Leu-Aib-OMe (II) and Boc-Aib-Ala-Aib-Ala-Leu-Ala-Leu-Aib-Leu-Aib-OMe (III), are predominantly alpha-helical with little effect on the conformation with interchange of Aib/Ala residues or Aib/Leu residues. The packing motif of helices in crystal II is antiparallel, whereas the helices pack in a skewed fashion in crystal III, with a 40 degrees angle between neighboring helix axes. Crystal III contains a water molecule in a hydrophobic hole that forms hydrogen bonds with two carbonyl oxygens that also participate in 5----1 type hydrogen bonds. Values for helical torsional angles phi and psi assume a much wider range than anticipated. Crystal II: C49H88N10O13, space group P2(1), with a = 16.625 (2) A, b = 9.811 (5) A, c = 18.412 (3) A, beta = 99.79 (1) degrees, Z = 2, R = 5.7% for 4338 data with magnitude of F0' greater than 3 sigma(F). Crystal III: C49H88N10O13 x 1/2H2O, space group P2(1) with a = 11.072 (2) A, b = 34.663 (5) A, c = 16.446 (3) A, beta = 107.85 (1) degrees, Z = 4, R = 8.3% for 6087 data with [F0[ greater than 3 sigma(F).  相似文献   

3.
The conformation of the peptide Boc-L-Met-Aib-L-Phe-OMe has been studied in the solid state and solution by X-ray diffraction and 1H n.m.r., respectively. The peptide differs only in the N-terminal protecting group from the biologically active chemotactic peptide analog formyl-L-Met-Aib-L-Phe-OMe. The molecules adopt a type-II beta-turn in the solid state with Met and Aib as the corner residues (phi Met = -51.8 degrees, psi Met = 139.5 degrees, phi Aib = 58.1 degrees, psi Aib = 37.0 degrees). A single, weak 4----1 intramolecular hydrogen bond is observed between the Boc CO and Phe NH groups (N---O 3.25 A, N-H---O 128.4 degrees). 1H n.m.r. studies, using solvent and temperature dependencies of NH chemical shifts and paramagnetic radical induced line broadening of NH resonances, suggest that the Phe NH is solvent shielded in CDCl3 and (CD3)2SO. Nuclear Overhauser effects observed between Met C alpha H and Aib NH protons provide evidence of the occurrence of Met-Aib type-II beta-turns in these solvents.  相似文献   

4.
Karle IL  Das C  Balaram P 《Biopolymers》2001,59(4):276-289
The insertion of alpha-hydroxy acids into peptide chains provides a convenient means for investigating the effects of hydrogen bond deletion on polypeptide secondary structures. The crystal structures of three oligopeptides containing L-lactic acid (Lac) residue have been determined. Peptide 1, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (Boc: tert-butyloxycarbonyl; Aib: alpha- aminoisobutyric acid; OMe: methyl ester), and peptide 2, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Leu-OMe, adopt completely helical conformations in the crystalline state with the Lac(6) residue comfortably accommodated in the center of a helix. The distance between the O atoms of Leu(3) CO group and the Lac(6) O (ester) in both the structures is 3.1-3.3 A. The NMR and CD studies of peptide 1 and its all-amide analogue 4, Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe, provide firm evidence for a continuous helical conformation in solution in both the cases. In a 14-residue peptide 3, Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Val-Ala-Leu-Aib-Val-Lac-Leu-OMe, residues Val(1)-Leu(10) adopt a helical conformation. Aib(11) is the site of chiral reversal resulting in helix termination by formation of a Schellman motif. Residues 12-14 adopt nonhelical conformations. The loss of the hydrogen bond near the C-terminus appears to facilitate the chiral reversal at Aib(11). Published 2001 John Wiley & Sons, Inc. Biopolymers 59: 276-289, 2001  相似文献   

5.
An energy term, representing the N-H...O type of hydrogen bond, which is a function of the hydrogen bond length (R) and angle (theta) has been introduced in an energy minimization program, taking into consideration its interpolation with the non-bonded energy for borderline values of R and theta. The details of the mathematical formulation of the derivatives of the hydrogen bond function as applicable to the energy minimization have been given. The minimization technique has been applied to hydrogen bonded two and three linked peptide units (gamma-turns and beta-turns), and having Gly, Ala and Pro side chains. Some of the conformational highlights of the resulting minimum energy conformations are a) the occurrence of the expected 4----1 hydrogen bond in all of the burn-turn tripeptide sequences and b) the presence of an additional 3----1 hydrogen bond in some of the type I and II tripeptides with the hydrogen bonding scheme in such type I beta-turns occurring in a bifurcated form. These and other conformational features have been discussed in the light of experimental evidence and theoretical predictions of other workers.  相似文献   

6.
t-Buthyoxycarbonyl-L -alanyl-α-aminiosobutyryl-L -alanyl-α-aminoisobutyryl-α-aminoisobutyric acid methyl ester (t-Boc-L -Ala-Aib-L -Ala-Aib-Aib-OMe), C24H43N5O8, an end-protected pentapeptide with a sequence corresponding to the 6th through the 10th residues in suzukacillin, crystallizes in the orthorhombic space group P212121 with a = 11.671, b = 14.534, c = 17.906 Å and z = 4. The molecule exists as a right-handed 310-helix with a pitch of 6.026 Å. The helix is stabilized by three 4 → 1 hydrogen bonds with the NH groups of Ala(3), Aib(4), and Aib(5) hydrogen bonding to the carbonyl oxygens of t-Boc, Ala(1), and Aib(2), respectively. The helical molecules arrange themselves in a head-to-tail fashion along the a direction in such a way that the NH groups of Ala(1) and Aib(2) hydrogen bond to the carbonyl oxygens of Aib(4) and Aib(5), respectively, of a translationally related molecule. The helical columns thus formed close-pack nearly hexagonally to form the crystal.  相似文献   

7.
An unusual C-terminal conformation has been detected in a synthetic decapeptide designed to analyze the stereochemistry of helix termination in polypeptides. The crystal structure of the decapeptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe reveals a helical segment spanning residues 1-7 and helix termination by formation of a Schellman motif, generated by (D)Ala(8) adopting the left-handed helical (alpha(L)) conformation. The extended conformation at (D)Leu(9) results in a compact folded structure, stabilized by a potentially strong C-H. O hydrogen bond between Ala(4) C(alpha)H and (D)Leu(9) CO. The parameters for C-H. O interaction are Ala(4) C(alpha)H. O=C (D)Leu(9) distance 3.27 A, C(alpha)-H. O angle 176 degrees, and O. H(alpha) distance 2.29 A. This structure suggests that insertion of contiguous D-residues may provide a handle for the generation of designed structures containing more than one helical segment folded in a compact manner.  相似文献   

8.
Karle IL 《Biopolymers》2001,60(5):351-365
The helix forming properties of the achiral alpha-amino isobutyric residue (Aib) have been demonstrated by numerous crystal structure analyses of designed and naturally occurring peptides containing one or more Aib residues in the sequence. Experimental and computational results concerning the type of helix obtained, whether the 3(10)-helix with 4 --> 1 type hydrogen bonds or the alpha-helix with 5 --> 1 hydrogen bonds or mixtures of the two, have been published. This paper deals with residues that, if inserted into a sequence, could perturb the helix-forming propensity afforded by the presence of Aib residues. Examples of structures will be presented in which Pro, Hyp, Gly-Gly, d-Ala-Gly, and Lac have been centrally placed in the sequence. In addition to the formation of helices, detailed experimentally obtained conformation information is presented for the role of the Aib residue in reversing the sense of the helix (the Schellman motif) with the consequent formation of the 6 --> 1 type hydrogen bond or a solvated 6 --> 1 hydrogen bond. Data are presented for 13 molecules with helix reversals at the C-terminus or near the center of the sequence.  相似文献   

9.
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.  相似文献   

10.
The conformational behaviour of deltaZPhe has been investigated in the model dipeptide Ac-deltaZPhe-NHMe and in the model tripeptides Ac-X-deltaZPhe-NHMe with X=Gly,Ala,Val,Leu,Abu,Aib and Phe and is found to be quite different. In the model tripeptides with X=Ala,Val,Leu,Abu,Phe the most stable structure corresponds to phi1=-30 degrees, psi1=120 degrees and phi2=psi2=30 degrees. This structure is stabilized by the hydrogen bond formation between C=O of acetyl group and the NH of the amide group, resulting in the formation of a 10-membered ring but not a 3(10) helical structure. In the peptides Ac-Aib-deltaZPhe-NHMe and Ac-(Aib-deltaZPhe)3-NHMe, the helical conformers with phi = +/-30 degrees, psi = +/-60 degrees for Aib residue and phi=psi= +/-30 degrees for deltaZPhe are predicted to be most stable. The computational studies for the positional preferences of deltaZPhe residue in the peptide containing one deltaZPhe and nine Ala residues reveal the formation of a 3(10) helical structure in all the cases with terminal preferences for deltaZPhe. The conformational behaviour of Ac-(deltaZPhe)n-NHMe with n< or =4 is predicted to be very labile. With n > 4, degenerate conformational states with phi,psi values of 0 degrees +/- 90 degrees adopt helical structures which are stabilized by carbonyl-carbonyl interactions and the N-H-pi interactions between the amino group of every deltaZPhe residue with one C-C edge of its own phenyl ring. The results are in agreement with the experimental finding that screw sense of helix for peptides containing deltaZPhe residues is ambiguous in solution. The helical structures stabilized by hydrogen bond formation are found to be at least 3kCalmol(-1) less stable. Conformational studies have also been carried out for the peptide Ac-(deltaEPhe)6-NHMe and the peptide Ac-deltaAla-(deltaZPhe)6-NHMe containing deltaAla residue at the N-terminal. The N-H-pi interactions are absent in peptide Ac-(deltaEPhe)6-NHMe.  相似文献   

11.
Carlos Alemn 《Biopolymers》1994,34(7):841-847
A quantum mechanical study to compare the ability of α-aminoisobutyric acid (Aib), de-hydroalanine (ΔAla), and alanine (Ala) residues to stabilize helical conformations has been performed. To address the study, the oligopeptides Xn (X = Aib, ΔAla and Ala), where n varies from 1 to 6, were computed with the AM1 semiempirical method. The results show that the residues modified at the Cα carbon atom, Aib and ΔAla, are better helical formers than Ala. Thus, a cooperative energy effect was found for both residues, and especially for ΔAla. These terms permit the understanding the different conformational behaviors between Ala and its Cα-modified residues Aib and ΔAla. This trend is important for de novo protein design, where Aib and ΔAla must be considered useful residues in the design of synthetic helical motifs. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are involved in a critical hydrogen bond donor interaction with a basic group on the enzyme which removes the developing proton during the glycosyl transfer reaction. Such groups are proposed to represent logical targets for irreversible covalent inactivation of this class of enzyme.  相似文献   

13.
The design, synthesis, characterization and self-assembling properties of a new class of amphiphilic peptides, constructed from a bifunctional polar core attached to totally hydrophobic arms, are presented. The first series of this class, represented by the general structure Py(Aibn)2 (Py=2,6-pyridine dicarbonyl unit; Aib=alpha, alpha'-dimethyl glycine; n=1-4), is prepared in a single step by the condensation of commercially available 2,6-pyridine dicarbonyl dichloride with the methyl ester of homo oligoAib peptide (Aibn-OMe) in the presence of triethyl amine. 1H NMR VT and ROESY studies indicated the presence of a common structural feature of 2-fold symmetry and an NH...N hydrogen bond for all the members. Whereas the Aib3 segment in Py(Aib3)2 showed only the onset of a 3(10)-helical structure, the presence of a well-formed 3(10)-helix in both Aib4 arms of Py(Aib4)2 was evident in the 1H NMR of the bispeptide. X-ray crystallographic studies have shown that in the solid state, whereas Py(Aib2)2 molecules organize into a sheet-like structure and Py(Aib3)2 molecules form a double-stranded string assembly, the tetra Aib bispeptide, Py(Aib4)2, is organized to form a tetrameric assembly which in turn extends into a continuous channel-like structure. The channel is totally hydrophobic in the interior and can selectively encapsulate lipophilic ester (CH3COOR, R=C2H5, C5H11) molecules, as shown by the crystal structures of the encapsulating channel. The crystal structure parameters are: 1b, Py(Aib2)2, C25H37N5O8, sp. gr. P2(1)2(1)2(1), a=9.170(1) A, b=16.215(2) A, c=20.091(3) A, R=4.80; 1c, Py(Aib3)2, C33H51N7O10H2O, sp. gr. P1, a=11.040(1) A, b=12.367(1) A, c=16.959(1) A, alpha =102.41 degrees, beta =97.29 degrees, gamma =110.83 degrees, R1=6.94; 1 da, Py(Aib4)2.et ac, C41H65N9O12.1.5H2O.C4H8O2, sp. gr. P1, a=16.064(4) A, b=16.156 A, c=21.655(5) A, alpha =90.14(1)degrees, beta=101.38(2) degrees, gamma=97.07(1)degrees, Z=4, R1=9.03; 1db, Py(Aib4)2.amylac, C41H65N9O12.H2O.C7H14O2, P2(1)/c, a=16.890(1) A, b=17.523(1)A, c=20.411(1) A, beta=98.18 degrees, Z=4, R=11.1 (with disorder).  相似文献   

14.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

15.
The introduction into peptide chains of alpha-aminoisobutyric acid (Aib) has proven to stabilize the helical structure in short peptides by restricting the available range of polypeptide backbone conformations. In order to evaluate the potential stabilizing effect of Aib at the protein level, we have studied the conformational and stability properties of Aib-containing analogs of the carboxy-terminal subdomain 255-316 of thermolysin. Previous NMR studies have shown that this disulfide-free 62-residue fragment forms a dimer in solution and that the global 3D structure of each monomer (3 alpha-helices encompassing residues 260-274, 281-295, and 301-311) is largely coincident with that of the corresponding region in the X-ray structure of intact thermolysin. The Aib analogs of fragment 255-316 were prepared by a semisynthetic approach in which the natural fragment 255-316 was coupled to synthetic analogs of peptide 303-316 using V8-protease in 50% (v/v) aqueous glycerol [De Filippis, V., and Fontana, A. (1990) Int. J. Pept. Protein Res. 35, 219-227]. The Ala residue in position 304, 309, or 312 of fragment 255-316 was replaced by Aib, leading to the singly substituted fragments Ala304Aib, Ala309Aib, and Ala312Aib. Moreover, fragment Ala304Aib/Ala309Aib with a double Ala --> Aib exchange in positions 304 and 309 was produced. Far- and near-UV circular dichroism measurements demonstrated that both secondary and tertiary structures of the natural fragment 255-316 are fully retained upon Ala --> Aib substitution(s). Thermal unfolding measurements, carried out by recording the ellipticity at 222 nm upon heating, showed that the melting temperatures (Tm) of analogs Ala304Aib and Ala309Aib were 2.2 and 5.4 °C higher than that of the Ala-containing natural species (Tm = 63.5 °C), respectively, whereas the Tm of the Ala312Aib analog was lowered by -0.6 °C. The enhanced stability of the Ala304Aib analog can be quantitatively explained on the basis of a reduced backbone entropy of unfolding due to the restriction of the conformational space allowed to Aib in respect to Ala, while the larger stabilization observed for the Ala309Aib analog can be accounted for by both entropic and hydrophobic effects. In fact, whereas Ala304 is a surface residue, Ala309 is shielded from the solvent, and thus the enhanced stability of fragment Ala309Aib is also due to the burial of an additional -CH3 group with respect to the natural fragment. The slightly destabilizing effect of the Ala --> Aib exchange in position 312 appears to derive from unfavorable strain energy effects, since phi and psi values for Ala312 are out of the allowed angles for Aib. Of interest, the simultaneous incorporation of Aib at positions 304 and 309 leads to a significant and additive increase of +8 °C in Tm. The results of this study indicate that the rational incorporation of Aib into a polypeptide chain can be a general procedure to significantly stabilize proteins.  相似文献   

16.
The Schellman motif is a widely observed helix terminating structural motif in proteins, which is generated when the C‐terminus residue adopts a left‐handed helical (αL) conformation. The resulting hydrogen‐bonding pattern involves the formation of an intramolecular 6 → 1 interaction. This helix terminating motif is readily mimicked in synthetic helical peptides by placing an achiral residue at the penultimate position of the sequence. Thus far, the Schellman motif has been characterized crystallographically only in peptide helices of length 7 residues or greater. The structure of the hexapeptide Boc–Pro–Aib–Gly–Leu–Aib–Leu–OMe in crystals reveal a short helical stretch terminated by a Schellman motif, with the formation of 6 → 1 C‐terminus hydrogen bond. The crystals are in the space group P212121 with a = 18.155(3) Å, b = 18.864(8) Å, c = 11.834(4) Å, and Z = 4 . The final R1 and wR2 values are 7.68 and 14.6%, respectively , for 1524 observed reflections [Fo ≥ 3ς(Fo)]. A 6 → 1 hydrogen bond between Pro(1)CO · · · Leu(6)NH and a 5 → 2 hydrogen bond between Aib(2)CO · · · Aib(5)NH are observed. An analysis of the available oligopeptides having an achiral Aib residue at the penultimate position suggests that chain length and sequence effects may be the other determining factors in formation of Schellman motifs. © 1999 John Wiley & Sons, Inc. Biopoly 50: 13–22, 1999  相似文献   

17.
Spatial structures of proteolytic segment A (sA) of bacterioopsin of H. halobium (residues 1-36) solubilized in a mixture of methanol-chloroform (1:1), 0.1 M LiClO4 organic mixture, or in perdeuterated sodium dodecyl sulfate (SDS) micelles, were determined by 2D 1H-NMR techniques. 324 and 400 NOESY cross-peak volumes were measured in NOESY spectra of sA in organic mixture and SDS micelles, respectively. The sA spatial structures were determined by local structure analysis, distance geometry calculation with program DIANA and systematic search for energetically allowed side chain rotamers consistent with NOESY cross-peak volumes. The structures of sA are similar in both milieus and have the right-handed alpha-helical region from Pro8 to Met32 with root mean square deviation (RMSD) of 0.25 A between backbone heavy atoms and fit well with Pro8 to Met32 alpha-helical region in electron cryo-microscopy model of bacteriorhodopsin. The N-terminal region Ala2-Gly6 of sA in organic mixture has a fixed structure of two consecutive gamma-turns as 2 * 2(7)-helix (RMSD of 0.25 A) stabilized by the Thr5 NH...O = C Gln3 and Ile4 NH...O = C Ala2 hydrogen bonds while this region in SDS micelles has disordered structure with RMSD of 1.44 A for backbone heavy atoms. The C-terminal region Gly33-Asp36 of sA is disordered in both milieus. Torsion angles chi 1 of sA were unequivocally determined for 13 (SDS) and 11 (organic mixture) of alpha-helical residues and are identical in both milieus.  相似文献   

18.
The molecular and crystal structures of one derivative and three model peptides (to the pentapeptide level) of the chiral C alpha,alpha-disubstituted glycine C alpha-methyl, C alpha-isopropylglycine [(alpha Me)Val] have been determined by X-ray diffraction. The derivative is mClAc-L-(alpha Me)Val-OH, and the peptides are Z-L-(alpha Me)Val-(L-Ala)2-OMe monohydrate, Z-Aib-L-(alpha Me)Val-(Aib)2-OtBu, and Ac-(Aib)2-L-(alpha Me)Val-(Aib)2OtBu acetonitrile solvate. The tripeptide adopts a type-I beta-turn conformation stabilized by a 1----4N--H...O = C intramolecular H-bond. The tetra- and pentapeptides are folded in regular right-handed 3(10)-helices. All four L-(alpha Me)Val residues prefer phi, psi angles in the right-handed helical region of the conformational map. The results indicate that: (i) the (alpha Me)Val residue is a strong type-I/III beta-turn and helix former, and (ii) the relationship between (alpha Me)Val chirality and helix screw sense is the same as that of C alpha-monosubstituted protein amino-acids. The implications for the use of the (alpha Me)Val residue in designing conformationally constrained analogues of bioactive peptides are briefly discussed.  相似文献   

19.
Sample peptides Boc-Leu4-Aib-Leu4-OBzl and Boc-(Leu4-Aib)2-OBzl, were crystallized by the solvent-evaporation method. Both crystals are monoclinic, with space group of P2(1) and Z = 2. The cell parameters are a = 16.580 (7), b = 21.105 (7), c = 11.583 (4) A, and beta = 104.90 (3) degrees (Boc-Leu4-Aib-Leu4-OBzl), and a = 15.247 (9), b = 19.04 (1), c = 16.311 (9) A, and beta = 117.10 (1) degrees [Boc-(Leu4-Aib)2-OBzl]. Crystal structures were solved by the direct method and refined to R values of 0.096 (the former peptide) and 0.112 (the latter). Peptide backbones fold into a right-handed alpha-helix, except for the C-terminal Aib residue in Boc-(Leu4-Aib)2-OBzl. Both peptide molecules are stabilized by six (the former) or seven (the latter) intramolecular (5----1) hydrogen bonds, and arranged in the head-to-tail fashion, which makes an infinite column. In this column, one (the former) or two (the latter) intermolecular hydrogen bonds link the neighboring molecules. In the case of Boc-Leu4-Aib-Leu4-OBzl, the solvent molecule N,N-dimethylformamide was found in the difference Fourier map. There was a hydrogen bond between peptide and solvent molecule. Along the lateral direction, only hydrophobic contacts were observed between adjacent peptide molecules.  相似文献   

20.
Molecular dynamics simulations of ion channel peptides alamethicin and melittin, solvated in methanol at 27 degrees C, were run with either regular alpha-helical starting structures (alamethicin, 1 ns; melittin 500 ps either with or without chloride counterions), or with the x-ray crystal coordinates of alamethicin as a starting structure (1 ns). The hydrogen bond patterns and stabilities were characterized by analysis of the dynamics trajectories with specified hydrogen bond angle and distance criteria, and were compared with hydrogen bond patterns and stabilities previously determined from high-resolution NMR structural analysis and amide hydrogen exchange measurements in methanol. The two alamethicin simulations rapidly converged to a persistent hydrogen bond pattern with a high level of 3(10) hydrogen bonding involving the amide NH's of residues 3, 4, 9, 15, and 18. The 3(10) hydrogen bonds stabilizing amide NH's of residues C-terminal to P2 and P14 were previously proposed to explain their high amide exchange stabilities. The absence, or low levels of 3(10) hydrogen bonds at the N-terminus or for A15 NH, respectively, in the melittin simulations, is also consistent with interpretations from amide exchange analysis. Perturbation of helical hydrogen bonding in the residues before P14 (Aib10-P14, alamethicin; T11-P14, melittin) was characterized in both peptides by variable hydrogen bond patterns that included pi and gamma hydrogen bonds. The general agreement in hydrogen bond patterns determined in the simulations and from spectroscopic analysis indicates that with suitable conditions (including solvent composition and counterions where required), local hydrogen-bonded secondary structure in helical peptides may be predicted from dynamics simulations from alpha-helical starting structures. Each peptide, particularly alamethicin, underwent some large amplitude structural fluctuations in which several hydrogen bonds were cooperatively broken. The recovery of the persistent hydrogen bonding patterns after these fluctuations demonstrates the stability of intramolecular hydrogen-bonded secondary structure in methanol (consistent with spectroscopic observations), and is promising for simulations on extended timescales to characterize the nature of the backbone fluctuations that underlie amide exchange from isolated helical polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号