首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An isolation procedure for phosphoribosyl succinocarboxamideaminoimidazole synthetase (SAICAR synthetase) (EC 6.3.2.6) has been developed. Pure SAICAR synthetase was found to be a monomeric protein with the apparent molecular weight of 36 kDa. The Michaelis constant for the three substrates of the reaction are 1.6 microM for CAIR, 14 microM for ATP and 960 microM for aspartic acid. The structural analogs of CAIR, 5-aminoimidazole ribotide and 5-aminoimidazole-4-carboxamide ribotide, act as competitive inhibitors of SAICAR synthetase. GTP and 2'-dATP can substitute for ATP in the reaction, while CTP and UTP inhibit the enzyme. No structural analogs of the aspartic acid were found to have affinity for SAICAR synthetase. The optimal reaction conditions for the enzyme were established to be at pH 8.0 and magnesium chloride concentration around 5 mM.  相似文献   

2.
The physiological concentration of free magnesium in Escherichia coli cells is about 1 mM, and there is almost no chloride in the cell. When the aminoacylation of tRNA by tyrosyl-tRNA synthetase was assayed at 1 mM free Mg2+, chloride (and sulphate) ions inhibited the reaction but acetate at the same concentration (< 200 mM) was not inhibitory. When the magnesium concentration was increased to 10 mM there was almost no chloride inhibition any more. Chloride strengthened the PPi inhibition, the Ki(app)(PPi) values at 1 mM free Mg2+ were 140, 120, and 56 microM at 0, 50 and 150 mM KCl, respectively. Chloride weakened the AMP inhibition, the corresponding values for Ki(app)(AMP) were 0.35, 0.5, and 0.9 mM. The value of Km(app)(tRNA(Tyr)) was clearly increased by chloride, being 22, 37, 93, and 240 nM at 0, 50, 100, and 150 mM KCl, respectively. Best-fit analyses of the PPi inhibition, AMP inhibition and Km(app)(tRNA) assays were accomplished using total rate equations. The analysis showed that the only kinetic events which are obligatory to explain the chloride effects are a weakened binding of Mg2+ to the tRNA before the transfer reaction and a weakened binding of Mg2+ to the Tyr-tRNA-enzyme complex after the transfer reaction. The dissociation constants for the former were 0.11, 0.3, and 2.8 mM and for the latter 0.6, 2.5, and 13 mM at 0, 50 and 150 mM KCl, respectively. Mg2+ is required for the reactive conformation of tRNA in the transfer reaction but chloride weakens its formation. After the transfer reaction the dissociation of Mg2+ from the aa-tRNA-enzyme complex enhances the dissociation of the aa-tRNA from the enzyme. The kinetics and the chloride effect were similar in the tyrosyl-tRNA synthetases from both Bacillus stearothermophilus and E. coli.  相似文献   

3.
Freshly isolated human erythrocytes contain S-adenosyl-L-methionine (AdoMet) at a concentration of about 3.5 mumol/l cells. When such cells are incubated in a medium containing 30 microM L-methionine, 18 mM D-glucose and 118 mM sodium phosphate (pH 7.4), intracellular AdoMet levels continuously decrease to a value of about 0.1 microM after 24 h. This occurs in spite of the fact that the cellular concentrations of the substrates for the AdoMet synthetase reaction, ATP and L-methionine, remain relatively constant. In a search for incubation conditions that lead to stable levels of AdoMet in incubated cells, we have developed a sodium-Hepes-buffered medium which includes 1 mM adenine and a stoichiometric excess of MgCl2 over its ligand, phosphate. The inclusion of magnesium ion (and a reduction in phosphate) appears to increase intracellular free Mg2+, which is required for full activity of the erythrocyte AdoMet synthetase. Even in the presence of MgCl2, however, the AdoMet pool level can drop 4-6-fold within the first 2 h of incubation. We present evidence that suggests that this initial fall in the cellular AdoMet level may be due to the activation of AdoMet-dependent protein carboxyl methyltransferase, an enzyme which accounts for a large fraction of the total cellular AdoMet utilization. Adenine, or related compounds in the medium may prevent this activation, although the mechanism of this action is not clear at present.  相似文献   

4.
The tetrahydropteroylglutamate methyltransferase from green beans (Phaseolus vulgaris) has been purified 80-fold by ion exchange chromatography and gel filtration. Optimal methyl transfer is found at pH 6.5 and 39 degrees C. Even at 0 degrees C, however, a considerable catalytic rate is observed. The Michaelis-Menten constants for homocysteine and 5-methyltetrahydropteroylglutamate are 0.43mM and 2.4 mM, respectively. Magnesium ions enhance the activity. Even purified preparations appear to contain traces of magnesium ions firmly bound, since a residual activity is found without addition of magnesium salts. Though the reaction requires anaerobiosis, an excess of reducing agents is inhibitory. The molecular weight of the transferase, determined by gel filtration, is 40 000 +/- 6%.  相似文献   

5.
The effects of magnesium ion concentration on the rate of electron transport in isolated pea thylakoids were investigated in the pH range from 4.0 up to 8.0. In the absence of magnesium ions in the medium and in the presence of 5 mM MgCl2 in the experiments not only without added artificial acceptors but also with ferricyanide or methylviologen as an acceptor, this rate had a well-expressed maximum at pH 5.0. It was shown that, after depression to minimal values at pH 5.5-6.5, it gradually rose with increasing pH. An increase in magnesium ion concentration up to 20 mM essentially affected the electron transfer rate: it decreased somewhat at pH 4.0-5.0 but increased at higher pH values. At this magnesium ion concentration, the maximum rate was at pH 6.0-6.5 and the minimum, at pH 7.0. Subsequent rise upon increasing pH to 8.0 was expressed more sharply. The influence of high magnesium ion concentration on the rate of electron transport was not observed in the presence of gramicidin D. It was found that without uncoupler, the changes in the electron transfer rate under the influence of magnesium ions correlated to the changes in the first-order rate constant of the proton efflux from thylakoids. It is supposed that the change in the ability of thylakoids to keep protons by the action of magnesium ions is the result of electrostatic interactions of these ions with the charges on the external surface of membranes. A possible role of regulation of the electron transport rate by magnesium ions in vivo is discussed.  相似文献   

6.
Using filtration through nitrocellulose membranes we found that complexes between yeast valyl-tRNA synthetase can easily be detected at low pH and ionic strength with the cognate tRNAVal, but also with several non-cognate tRNAs (tRNAPhe, tRNATyr, tRNAMet and tRNAAsp). We show here that the amino acid linked to the tRNA has no detectable effect on these interactions. The influence of various factors on the discrimination by the enzyme between the cognate and the non-cognate tRNAs has been studied. An increase in pH or ionic strength leads to a decrease in the same ratio of the affinity constants between the enzyme and the cognate as well as the noncognate tRNA. The addition of organic solvents has little effect on these constant either in the cognate or in the non-cognate systems; the addition of substrates of the aminoacylation reaction has not effect on the ratio between the constants. This similar behaviour suggests that at least part of the specific of non-specific interactions must be identical. On the contrary, magnesium between 1 mM and 50 mM increases the specificity of recognition, showing the importance of slight conformational changes in the tRNA molecule to the specificity of interaction.  相似文献   

7.
Abstract: A sensitive radioisotopic assay has been used to examine the kinetic properties and regulation of biosynthesis of glutamine synthetase in C-6 glioma cultures. The Km values for glutamate, MgATP, and ammonium ion were 5mM, 14 mM, and 0.042 mM, respectively, when measured at the pH optimum of 7.2. There was an absolute requirement for a divalent metal ion, with 15 mM- Mg2+ being the preferred ion at pH 7.2. Activity was completely inhibited after 30 min with 8 mM-L-methionhe sulfoximine. The addition of 1 μM-cortisol to C-6 cultures caused a two to threefold increase in glutamine synthetase specific activity over a 96-h period, while dexamethasone at the same concentration elevated the level some 7-10-fold. This was specific for glucocorticoids, as other steroid hormones or catecholamines did not significantly affect glutamine synthetase specific activity. Cycloheximide (30 μM) or actinomycin D (0.01 μg/ml) blocked the hormone response. The continued presence of hormone was required in order to maintain an elevated enzyme level. The results suggest that glucocorticoids act to induce glutamine synthetase by stimulating new enzyme synthesis.  相似文献   

8.
λ-Glutamylcysteine synthetase activity (EC 6.3.2.2) was analysed in Sephacryl S-200 eluents of extracts from cell suspension cultures ofNicotiana tabacum L. cv. Samsun by determination of λ-glutamylcysteine as its monobromobimane derivative. The enzyme has a relative molecular mass (Mr) of 60000 and exhibits maximal activity at pH 8 (50% at pH 7.0 and pH9.0) and an absolute requirement for Mg2+. With 0.2mM Cd2+ or Zn2+, enzyme activity was reduced by 35% and 19%, respectively. Treatment with 5 mM dithioerythritol led to a heavy loss of activity and to dissociation into subunits (Mr 34000). Buthionine sulfoximine andl-methionine-sulfoximine, known as potent inhibitors of λ-glutamylcysteine synthetase from mammalian cells, were found to be effective inhibitors of the plant enzyme too. The apparent Km values forl-glutamate,l-cysteine, and α-aminobutyrate were, respectively, 10.4mM, 0.19 mM, and 6.36 mM. The enzyme was completely inhibited by glutathione (Ki=0.42 mM). The data indicate that the rate of glutathione synthesis in vivo may be influenced substantially by the concentration of cysteine and glutamate and may be further regulated by feedback inhibition of λ-glutamylcysteine synthetase by glutathione itself. λ-Glutamylcysteine synthetase is, like glutathione synthetase, localized in chloroplasts as well as in the cytoplasm. Chloroplasts fromPisum sativum L. isolated on a Percoll gradient contained about 72% of the λ-glutamylcysteine synthetase activity in leaf cells and 48% of the total glutathione synthetase activity. In chloroplasts ofSpinacia oleracea L. about 61% of the total λ-glutamylcysteine synthetase activity of the cells were found and 58% of the total glutathione synthetase activity. These results indicate that glutathione synthesis can take place in at least two compartments of the plant cell. Dedicated to Professor A. Prison on the occasion of his 80th birthday  相似文献   

9.
Sucrose synthetase (EC 2.4.1.13 [EC] ) was found in the latex of therubber tree but the activity of sucrose phosphate synthetase(EC 2.4.1.14 [EC] ) was not detected. The enzyme was purified andsome properties have been investigated. Examination of the kineticsof sucrose synthesis revealed Km of 0.56 mM for uridine diphosphoglucoseand 3.85 mM for fructose. Mg2+ and cyanide activated sucrosesynthesis but reduced the cleavage reaction. Increased pH hadthe same effect, the synthetic activity being higher than theactivity of sucrose breakdown within the physiological levelsof latex pH. In the latex of regularly tapped trees, the total enzyme activityin the direction of synthesis was about 10% or less of the totalinvertase activity at pH 7.0. Because of the strong limitationof invertase under natural conditions, the proportion of actualsynthetase activity is, however, much higher and evidence ispresented that in the latex of regularly tapped trees this activitysignificantly reduces carbohydrate breakdown. Some indications have been obtained that this involvement ofsucrose synthetase is weakened by application of Ethrel to thebark. A reduction of its synthetic activity, accompanied byan acceleration of sucrose utilization in latex cytoplasm andby an increase of latex yield, could be observed before thetreatment-induced rise of pH enhancing inver.  相似文献   

10.
The apparent equilibrium constants (K') for six reactions catalyzed by aminoacyl-tRNA synthetases from Escherichia coli were measured, the equations for the magnesium dependence of the equilibrium constants were derived, and best-fit analyses between the measured and calculated values were used. The K' values at 1 mM Mg(2+) ranged from 0.49 to 1.13. The apparent equilibrium constants increased with increasing Mg(2+) concentrations. The values were 2-3 times higher at 20 mM Mg(2+) than at 1 mM Mg(2+), and the dependence was similar in the class I and class II synthetases. The main reason for the Mg(2+) dependence is the existence of PP(i) as two magnesium complexes, but only one of them is the real product. AMP exists either as free AMP or as MgAMP, and therefore also has some effect on the measured equilibrium constant. However, these dependences alone cannot explain the measured results. The measured dependence of the K' on the Mg(2+) concentration is weaker than that caused by PP(i) and AMP. Different bindings of the Mg(2+) ions to the substrate tRNA and product aminoacyl-tRNA can explain this observation. The best-fit analysis suggests that tRNA reacts as a magnesium complex in the forward aminoacylation direction but this given Mg(2+) ion is not bound to aminoacyl-tRNA at the start of the reverse reaction. Thus Mg(2+) ions seem to have an active catalytic role, not only in the activation of the amino acid, but in the posttransfer steps of the aminoacyl-tRNA synthetase reaction, too.  相似文献   

11.
Escherichia coli NAD synthetase was overexpressed and purified to homogeneity. The recombinant protein was active in an in vitro enzyme assay. The enzyme required approximately 1.5 mM magnesium for optimal activity. The pH optimum was found to be 8.0-8.5. The recombinant protein was crystallized at room temperature using the hanging-drop vapor diffusion technique with 1.5 M lithium sulfate, 0. 1 M Hepes buffer at pH 7.5 as precipitant. The protein was also crystallized in the presence of its substrates, nicotinic acid adenine dinucleotide and adenosine triphosphate under similar conditions. These crystals diffract to 2.0-A resolution and belong to trigonal space group P3(1)21 with unit cell dimensions of a = b = 91.766, c = 74.17 A and alpha = beta = 90 degrees, gamma = 120 degrees. The structure of the complex has been determined using the molecular replacement method.  相似文献   

12.
Concentrated cell-extract of Pseudomonas taetrolens Y-30, isolated as a methylamine-assimilating organism, formed gamma-glutamylethylamide (theanine) from glutamic acid and ethylamine in a mixture containing the alcoholic fermentation system of baker's yeast for ATP-regeneration. Glutamine synthetase (GS), probably responsible for theanine formation, was isolated from the extract of the organism grown on a medium containing 1% methylamine, 1% glycerol, 0.5% yeast extract, and 0.2% polypepton as carbon and nitrogen sources. The molecular mass was estimated to be 660 kDa by gel filtration and 55 kDa by SDS-polyacrylamide gel electrophoresis, suggesting that Ps. taetrolens Y-30 GS consists of 12 identical subunits. The enzyme required Mg2+ or Mn2+ for its activity. Under the standard reaction condition for glutamine formation (pH 8.0 with 30 mM Mg2+), GS showed 7% and 1% reactivity toward methylamine and ethylamine respectively of that to ammonia. Reactivity to the alkylamines varied with optimum pH of the reaction in response to divalent cation in the mixture: pH 11.0 was the optimum for the Mg2+ -dependent reaction with ethylamine, and pH 8.5 was the optimum for the Mn2+ -dependent reaction. In a mixture of an optimum reaction condition with 1000 mM ethylamine (at pH 8.5 with 3 mM Mn2+), reactivity increased up to 7% of the reactivity to ammonia in the standard reaction condition. The isolated GS formed theanine in the mixture with the yeast fermentation system.  相似文献   

13.
PR-ATP synthetase, the first enzyme of histidine biosynthesis of Salmonella typhimurium has been purified by an improved procedure which yields enzyme which migrates as a single band in both gel electrophoresis and electrofocusing experiments. When stored in glycerol solution at −15°C, PR-ATP synthetase remains fully active and sensitive to inhibition by histidine for extended time periods. The enzyme requires manganese or magnesium ions for activity and is activated by numerous monovalent cations. The pH optimum is 8 to 10 and is strongly dependent upon the buffer employed. The equilibrium constant for the reaction is 10−3.  相似文献   

14.
Ribulose 1,5-bisphosphate carboxylase when activated by preincubation with 1 mM bicarbonate and 10 mM magnesium chloride can be further activated ca 20–500% by incubating with 2.5 mM phosphoglycolate depending upon the pH of the preincubation medium. The activation effects were seen only under specific preincubation conditions. The activation by phosphoglycolate was a slow reaction requiring ca 15 min for maximal effect. Even though magnesium was essential for phosphoglycolate activation, concentrations higher than 15 mM progressively inhibited the activation of the enzyme by phosphoglycolate. When added directly to the reaction mixture, phosphoglycolate was a potent inhibitor of the carboxylase activity. Even under preincubating conditions, phosphoglycolate showed slight inhibitory effect at 0.1 mM and activation was observed at concentrations higher than 0.5 mM. The KA value for phosphoglycolate was 2.8 mM.  相似文献   

15.
The aim of the present study was to test simple reaction sequences which describe calcium-independent plus calcium-dependent phosphorylation of sarcoplasmic reticulum transport. ATPase by orthophosphate including the function of magnesium in phosphoenzyme formation. The reaction schemes considered were based on the reaction sequence for calcium-independent phosphorylation proposed previously; namely that the transport enzyme (E) forms a ternary complex (Mg . E . Pi), by random binding of free magnesium and free orthophosphate, which is in equilibrium with the magnesium-phosphoenzyme (Mg . E-P). Phosphorylation, performed at pH 7.0 20 degrees C and a constant free orthophosphate concentration using sarcoplasmic reticulum vesicles either unloaded or loaded passively with calcium in the presence of 5 mM or 40 mM CaCl2, resulted in a gradual decrease in the apparent magnesium half-saturation constant and an increase in maximum phosphoprotein formation with increasing calcium loads. When phosphorylation of sarcoplasmic reticulum vesicles preloaded in the presence of 5 mM CaCl2 was performed at a constant free magnesium concentration, a decrease in the apparent orthophosphate half-saturation constant and an increase in maximum phosphoprotein formation was observed as compared with vesicles from which calcium inside has been removed by ionophore X-537A plus EGTA treatment; however, both parameters remained unchanged by increasing free magnesium from 20 mM to 30 mM. When phosphorylation of sarcoplasmic reticulum vesicles passively loaded with calcium in the presence of 40 mM CaCl2, at which the saturation of the low-affinity calcium binding sites of the ATPase is presumably near maximum, was performed at increasing concentrations of free orthophosphate, there was a parallel shift of phosphoprotein formation as a function of free magnesium and vice versa, with no change in the maximum phosphoenzyme formation. Comparison of the experimental data with the pattern of phosphoprotein formation predicted from model equations for various theoretical possible reaction sequences suggests that phosphoenzyme formation from orthophosphate possesses the following features. Firstly, calcium present at the inside of the sarcoplasmic reticulum membrane binds to the free enzyme and in sequential order to E . Mg . Pi or Mg . E-P or to both, but neither to E. Mg nor to E . Pi. Secondly, calcium-independent and calcium-dependent phosphoproteins are magnesium-phosphoenzymes. Calcium-dependent phosphoenzyme is a magnesium-calcium-enzyme phosphate complex with 1 magnesium, 2 calciums and 1 orthophosphate (the last covalently) bound to the enzyme [Mg . E-P . (Cai)2], and not a 'calcium-phosphoprotein' without bound magnesium.  相似文献   

16.
Glutamine synthetase (EC 6.3.1.2) activity of hepatoma tissue culture cells is elevated by cortocisteroids and depressed by glutamine (Kulka, R.G., Tomkins, G.M. and Crook, R.B. (1972) J. Cell Biol., 54, 175–179). The transfer of cells from high (1–5 mM) to low (0.2–0.4 mM) concentrations of glutamine causes a marked increase in glutamine synthetase activity. The addition of a glutamine antagonist, methionine sulfone (1 mM) to cells suspended in high (1 mM) concentrations of glutamine also causes an increase of glutamine synthetase activity which is greater than that elicited by the transfer of cells to low concentrations of glutamine. Rates of synthesis of glutamine synthetase have been measured by radioimunoprecipitation in hepatoma tissue culture cells incubated under various conditions. Incubation of cells with the synthetic corticosteroid hormone, dexamethasone, markedly stimulates the relative rate of glutamine synthetase biosynthesis. Glutamine, or its analogue, methionine sulfone, have no effect on the relative rate of synthesis of the enzyme. However, total protein and RNA synthesis increase markedly with increasing external glutamine concentration in the range 0–1 mM. Methionine sulfone (1 mM) inhibits the degradation of glutamine synthetase in the presence of 1 mM glutamine. The data are consistent with the conclusion that the corticosteroid, dexamethasone, elevates glutamine synthetase activity by stimulating its rate of synthesis, whereas methionine sulfone elevates glutamine synthetase activity by inhibiting the glutamine-stimulated degradation of preformed enzyme.  相似文献   

17.
We found that a psychrophilic bacterium isolated from Antarctic seawater, Cytophaga sp. KUC-1, abundantly produces aspartase [EC4.3.1.1], and the enzyme was purified to homogeneity. The molecular weight of the enzyme was estimated to be 192,000, and that of the subunit was determined to be 51,000: the enzyme is a homotetramer. L-Aspartate was the exclusive substrate. The optimum pH in the absence and presence of magnesium ions was determined to be pH 7.5 and 8.5, respectively. The enzyme was activated cooperatively by the presence of L-aspartate and by magnesium ions at neutral and alkaline pHs. In the deamination reaction, the K(m) value for L-aspartate was 1.09 mM at pH 7.0, and the S(1/2) value was 2.13 mM at pH 8.5. The V(max) value were 99.2 U/mg at pH 7.0 and 326 U/mg at pH 8.5. In the amination reaction, the K(m) values for fumarate and ammonium were 0.797 and 25.2 mM, respectively, and V(max) was 604 U/mg. The optimum temperature of the enzyme was 55 degrees C. The enzyme showed higher pH and thermal stabilities than that from mesophile: the enzyme was stable in the pH range of 4.5-10.5, and about 80% of its activity remained after incubation at 50 degrees C for 60 min. The gene encoding the enzyme was cloned into Escherichia coli, and its nucleotides were sequenced. The gene consisted of an open reading frame of 1,410-bp encoding a protein of 469 amino acid residues. The amino acid sequence of the enzyme showed a high degree of identity to those of other aspartases, although these enzymes show different thermostabilities.  相似文献   

18.
The activity of phosphoribosylpyrophosphate (PRPP) synthetase (ATP: D-ribose-5-phosphate pyrophosphotransferase, EC 2.7.6.1) is decreased in the erythrocyte in hereditary pyrimidine 5'-nucleotidase (P5N) deficiency. Given the increased pyrimidine nucleotide content of the P5N-deficient erythrocyte, we evaluated the effects of prototypic pyrimidine nucleotides on the activity of PRPP synthetase. In normal hemolysate a 1.0 mM combination of cytidine tri-, di- and monophosphate (CTP/CDP/CMP) inhibited PRPP synthetase activity and changed the ribose 5-phosphate (R5P) saturation curve from a hyperbola to a biphasic shape. Untreated crude hemolysate from P5N-deficient erythrocytes showed a biphasic R5P kinetic curve. Since the activity of PRPP synthetase is dependent on its state of subunit aggregation, we examined PRPP synthetase subunit aggregation using gel permeation chromatography. P5N-deficient erythrocytes had a decreased absolute amount of aggregated PRPP synthetase and almost a total loss of disaggregated PRPP synthetase. Using normal hemolysate, 1 mM CTP/CDP/CMP interfered with the ability of 1.0 mM ATP and 2.0 mM MgCl2 to promote PRPP synthetase subunit aggregation. Increasing the MgCl2 to 6.0 mM overcame the inhibitory effect of CTP/CDP/CMP. Thus, the decreased PRPP synthetase activity of the P5N-deficient erythrocyte is due, at least in part, to the ability of the accumulated pyrimidine nucleotides to sequester magnesium and to interfere with the subunit aggregation of PRPP synthetase.  相似文献   

19.
The level of glutamine synthetase in Micrococcus glutamicus ATCC 13032 varied in response to the nitrogen source in culture medium; it was 10?20 fold higher in glutamate-, peptone- or yeast extract-grown cells than in ammonia- or urea-grown cells. Ammonia (3 mM) reduced the enzyme level to 50% when added to glutamate medium. No difference between nitrogen sources was observed in extent of inhibition by Mg2+ of γ-glutamylhydroxamate-forming (transferring) reaction in crude extracts.

The optimum pH was 7.0 ? 8.0 for glutamine-forming (synthesizing) reaction and 7.0 for transferring reaction. The enzyme was stable to heating at 50°C for 10 min in 0.05 M potassium phosphate buffer (pH 6.0) containing 0.1 mM MnCl2. Km values for glutamate, ammonia and ATP in synthesizing reaction were 7.9, 5.0 and 1.2 mM, respectively. GTP and hydroxylamine could be substituted for ATP and ammonia with about 10 and 30% reactivity. Mg2+ was effective as a cofactor in synthesizing reaction and Mn2+ showed 34% of the reactivity of Mg2+ at a concentration of 30 mM. Glutamine synthetase was inhibited by adenosine, AMP and ADP but not by amino acids other than D-threonine. The regulation system of glutamine synthetase in M. glutamicus is discussed.  相似文献   

20.
The sesquiterpene cyclase, trichodiene synthetase, has been purified from a supernatant fraction of Fusarium sporotrichioides by hydrophobic interaction, anion exchange, and gel filtration chromatography. Purified enzyme had a specific activity 15-fold higher than that previously reported for preparations of terpene cyclases. Molecular weight determinations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography indicated the enzyme to be a dimer with a subunit of Mr 45,000. The requirement of Mg2+ (Km 0.1 mM) for activity could be partially substituted with Mn2+ at a concentration of 0.01 mM, but higher concentrations of Mn2+ were inhibitory. Maximum activity was observed between pH 6.75 and pH 7.75. The Km for farnesyl pyrophosphate was 0.065 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号