首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper gives a brief overview of the recent ideas about molecular and genetic mechanisms of plant resistance to viruses. Two plant antiviral strategies (R-gene-mediated mechanism and RNA-silencing) are considered. Examples of engineered virus resistance are presented.  相似文献   

3.
4.
Induction and suppression of RNA silencing: insights from viral infections   总被引:2,自引:0,他引:2  
In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.  相似文献   

5.
Antisense RNA ribozymes have intrinsic endonucleolytic activity to effect cleavage of the target RNA. However, this activity in vivo is often controlled by the dominance of antisense or other double-stranded RNA mechanism. In this work, we demonstrate the in planta activity of a hammerhead ribozyme designed to target rep-mRNA of a phytopathogen Mungbean Yellow Mosaic India virus (MYMIV) as an antiviral agent. We also found RNA-silencing is induced on introduction of catalytically active as well as inactive ribozymes. Using RNA-silencing suppressors (RSS), we demonstrate that the endonucleolytic activity of ribozymes is a true phenomenon, even while a mutated version may demonstrate a similar down-regulation of the target RNA. This helps to ease the confusion over the action mechanism of ribozymes in vivo.  相似文献   

6.
RNA silencing bridging the gaps in wheat extracts   总被引:4,自引:0,他引:4  
In plants, RNA silencing plays important roles in antiviral defence, genome integrity and development. This process involves nucleotide sequence-specific interactions that are mediated by small RNA molecules of 21-25 nucleotides. Although the core biochemical reactions of RNA silencing have been well characterized in animals, such information was crucially missing in plants. Recent work now addresses this question and reveals an overall similarity between the plant and animal RNA-silencing pathways, as well as some intriguing plant-specific aspects.  相似文献   

7.
RNA silencing is an evolutionarily conserved surveillance system that occurs in a broad range of eukaryotic organisms. In plants, RNA silencing acts as an antiviral system; thus, successful virus infection requires suppression of gene silencing. A number of viral suppressors have been identified so far; however, the molecular bases of silencing suppression are still poorly understood. Here we show that p19 of Cymbidium ringspot virus (CymRSV) inhibits RNA silencing via its small RNA-binding activity in vivo. Small RNAs bound by p19 in planta are bona fide double-stranded siRNAs and they are silencing competent in the in vitro RNA-silencing system. p19 also suppresses RNA silencing in the heterologous Drosophila in vitro system by preventing siRNA incorporation into RISC. During CymRSV infection, p19 markedly diminishes the amount of free siRNA in cells by forming p19-siRNA complexes, thus making siRNAs inaccessible for effector complexes of RNA-silencing machinery. Furthermore, the obtained results also suggest that the p19-mediated sequestration of siRNAs in virus-infected cells blocks the spread of the mobile, systemic signal of RNA silencing.  相似文献   

8.
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.  相似文献   

9.
10.
RNA silencing plays a major role in innate antiviral and antibacterial defenses in plants, insects, and animals through the action of microRNAs (miRNAs). miRNAs can act in favor of the microorganism, either when it is pathogen-encoded or when the microorganism subverts host miRNAs to its benefit. Recent data point to the possibility that apicomplexan parasites have developed tactics to interfere with host miRNA populations in a parasite-specific manner, thereby identifying the RNA-silencing pathway as a new means to reshape their cellular environment. This review highlights the current understanding and new insights concerning the mechanisms that could be involved and the potential roles of the host microRNome (miRNome) in apicomplexan infection.  相似文献   

11.
RNA silencing in plants and insects can function as a defence mechanism against invading viruses. RNA silencing-based antiviral defence entails the production of virus-derived small interfering RNAs which guide specific antiviral effector complexes to inactivate viral genomes. As a response to this defence system, viruses have evolved viral suppressors of RNA silencing (VSRs) to overcome the host defence. VSRs can act on various steps of the different silencing pathways. Viral infection can have a profound impact on the host endogenous RNA silencing regulatory pathways; alterations of endogenous short RNA expression profile and gene expression are often associated with viral infections and their symptoms. Here we discuss our current understanding of the main steps of RNA-silencing responses to viral invasion in plants and the effects of VSRs on endogenous pathways. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

12.
The Cucumber mosaic virus (CMV)-encoded 2b protein (Cmv2b) is a nuclear protein that suppresses transgene RNA silencing in Nicotiana benthamiana. Cmv2b is an important virulence determinant but nonessential for systemic spread in N. glutinosa, in contrast to its indispensable role for systemic infections in cucumber. Here, we report that Cmv2b became essential for systemic infections in older N. glutinosa plants or in young seedlings pretreated with salicylic acid (SA). Expression of Cmv2b from the genome of either CMV or Tobacco mosaic virus significantly reduced the inhibitory effect of SA on virus accumulation in inoculated leaves and systemic leaves. A close correlation is demonstrated between Cmv2b expression and a reduced SA-dependent induction of the alternative oxidase gene, a component of the recently proposed SA-regulated antiviral defense. These results collectively reveal a novel activity of Cmv2b in the inhibition of SA-mediated virus resistance. We used a N. tabacum line expressing a bacterial nahG transgene that degrades SA to provide evidence for a Cmv2b-sensitive antiviral defense mechanism in tobacco in which SA acts as a positive modifier but not as an essential component. We propose that SA induces virus resistance by potentiating a RNA-silencing antiviral defense that is targeted by Cmv2b.  相似文献   

13.
14.
RNA-silencing mechanisms control many aspects of gene regulation including the detection and degradation of viral RNA through the action of, among others, Dicer-like and Argonaute (AGO) proteins. However, the extent to which RNA silencing restricts virus host range has been difficult to separate from other factors that can affect virus-plant compatibility. Here we show that Potato virus X (PVX) can infect Arabidopsis (Arabidopsis thaliana), which is normally a nonhost for PVX, if coinfected with a second virus, Pepper ringspot virus. Here we show that the pepper ringspot virus 12K protein functions as a suppressor of silencing that appears to enable PVX to infect Arabidopsis. We also show that PVX is able to infect Arabidopsis Dicer-like mutants, indicating that RNA silencing is responsible for Arabidopsis nonhost resistance to PVX. Furthermore, we find that restriction of PVX on Arabidopsis also depends on AGO2, suggesting that this AGO protein has evolved to specialize in antiviral defenses.  相似文献   

15.
Viral class 1 RNase III involved in suppression of RNA silencing   总被引:2,自引:0,他引:2  
Double-stranded RNA (dsRNA)-specific endonucleases belonging to RNase III classes 3 and 2 process dsRNA precursors to small interfering RNA (siRNA) or microRNA, respectively, thereby initiating and amplifying RNA silencing-based antiviral defense and gene regulation in eukaryotic cells. However, we now provide evidence that a class 1 RNase III is involved in suppression of RNA silencing. The single-stranded RNA genome of sweet potato chlorotic stunt virus (SPCSV) encodes an RNase III (RNase3) homologous to putative class 1 RNase IIIs of unknown function in rice and Arabidopsis. We show that RNase3 has dsRNA-specific endonuclease activity that enhances the RNA-silencing suppression activity of another protein (p22) encoded by SPCSV. RNase3 and p22 coexpression reduced siRNA accumulation more efficiently than p22 alone in Nicotiana benthamiana leaves expressing a strong silencing inducer (i.e., dsRNA). RNase3 did not cause intracellular silencing suppression or reduce accumulation of siRNA in the absence of p22 or enhance silencing suppression activity of a protein encoded by a heterologous virus. No other known RNA virus encodes an RNase III or uses two independent proteins cooperatively for RNA silencing suppression.  相似文献   

16.
Virus encoded RNA-silencing suppressors (RSSs) are the key components evolved by the viruses to counter RNA-silencing defense of plants. Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B and ORF βC1 in satellite DNA β which are predicted to function as silencing suppressors. In the present study suppressor function of ORF βC1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl Multan betasatellite CLCuMB–[IN:Sri:02] and Luffa leaf distortion betasatellite LuLDB-[IN:Lu:04] were examined. Agroinfiltration of GFP-silenced Nicotiana tabaccum cv. Xanthi with the cells expressing βC1 protein resulted in reversal of silenced GFP expression. GFP-siRNA level was more than 50-fold lower compared to silenced plants in plants infiltrated with βC1 gene from ToLCBB. However, in the case of 35S-βC1 CLCuMB and 35S-βC1 LuLDB construct, although GFP was expressed, siRNA level was not reduced, indicating that the step at which βC1 interfere in RNA-silencing pathway is different.  相似文献   

17.
Plant viruses ubiquitously mediate the induction of miR168 trough the activities of viral suppressors of RNA silencing (VSRs) controlling the accumulation of ARGONAUTE1 (AGO1), one of the main components of RNA silencing based host defence system. Here we used a mutant Tombusvirus p19 VSR (p19-3M) disabled in its main suppressor function, small interfering RNA (siRNA) binding, to investigate the biological role of VSR-mediated miR168 induction. Infection with the mutant virus carrying p19-3M VSR resulted in suppressed recovery phenotype despite the presence of free virus specific siRNAs. Analysis of the infected plants revealed that the mutant p19-3M VSR is able to induce miR168 level controlling the accumulation of the antiviral AGO1, and this activity is associated with the enhanced accumulation of viral RNAs. Moreover, saturation of the siRNA-binding capacity of p19 VSR mediated by defective interfering RNAs did not influence the miR168-inducing activity. Our data indicate that p19 VSR possesses two independent silencing suppressor functions, viral siRNA binding and the miR168-mediated AGO1 control, both of which are required to efficiently cope with the RNA-silencing based host defence. This finding suggests that p19 VSR protein evolved independent parallel capacities to block the host defence at multiple levels.  相似文献   

18.
Research into the mechanism of RNA interference has seen immense progress over the past few years. Recent studies of the protein Dicer, a key enzyme in the process, have started to reveal how this single enzyme is targeted to different RNA-silencing pathways.  相似文献   

19.
Issues related to the nicotine content of tobacco have been public concerns.Several reports have described decreasing nicotine levels by silencing the putrescine N-methyltransferase (PMT) genes, but the reported variations of nicotine levels among transgenic lines are relatively low in general. Here we describe the generation in tobacco (Nicotiana tabacum) lines with widely different, reduced nicotine levels using three kinds of RNA-silencing approaches.The relative efficacies of suppression were compared among the three approaches regarding the aspect of nicotine level in tobacco leaves.By suppressing expression of the PMT genes, over 200 transgenic lines were obtained with nicotine levels reduced by 9.1-96.7%. RNA interference (RNAi) was the most efficient method of reducing the levels of nicotine,whereas cosuppression and antisense methods were less effective. This report gives clues to the efficient generation of plants with a variety of metabolite levels, and the results demonstrate the relative efficiencies of various RNA-silencing methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号