首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have explored CD44 (a hyaluronan (HA) receptor) interaction with a Na(+)-H(+) exchanger (NHE1) and hyaluronidase-2 (Hyal-2) during HA-induced cellular signaling in human breast tumor cells (MDA-MB-231 cell line). Immunological analyses demonstrate that CD44s (standard form) and two signaling molecules (NHE1 and Hyal-2) are closely associated in a complex in MDA-MB-231 cells. These three proteins are also significantly enriched in cholesterol and ganglioside-containing lipid rafts, characterized as caveolin and flotillin-rich plasma membrane microdomains. The binding of HA to CD44 activates Na(+)-H(+) exchange activity which, in turn, promotes intracellular acidification and creates an acidic extracellular matrix environment. This leads to Hyal-2-mediated HA catabolism, HA modification, and cysteine proteinase (cathepsin B) activation resulting in breast tumor cell invasion. In addition, we have observed the following: (i) HA/CD44-activated Rho kinase (ROK) mediates NHE1 phosphorylation and activity, and (ii) inhibition of ROK or NHE1 activity (by treating cells with a ROK inhibitor, Y27632, or NHE1 blocker, S-(N-ethyl-N-isopropyl) amiloride, respectively) blocks NHE1 phosphorylation/Na(+)-H(+) exchange activity, reduces intracellular acidification, eliminates the acidic environment in the extracellular matrix, and suppresses breast tumor-specific behaviors (e.g. Hyal-2-mediated HA modification, cathepsin B activation, and tumor cell invasion). Finally, down-regulation of CD44 or Hyal-2 expression (by treating cells with CD44 or Hyal-2-specific small interfering RNAs) not only inhibits HA-mediated CD44 signaling (e.g. ROK-mediated Na(+)-H(+) exchanger reaction and cellular pH changes) but also impairs oncogenic events (e.g. Hyal-2 activity, hyaluronan modification, cathepsin B activation, and tumor cell invasion). Taken together, our results suggest that CD44 interaction with a ROK-activated NHE1 (a Na(+)-H(+) exchanger) in cholesterol/ganglioside-containing lipid rafts plays a pivotal role in promoting intracellular/extracellular acidification required for Hyal-2 and cysteine proteinase-mediated matrix degradation and breast cancer progression.  相似文献   

2.
3.
The human hyaluronidase Hyal-1, one of six human hyaluronidase subtypes, preferentially degrades hyaluronic acid present in the extracellular matrix of somatic tissues. Modulations of Hyal-1 expression have been observed in a number of malignant tumors. However, its role in disease progression is discussed controversially due to limited information on enzyme properties as well as the lack of specific inhibitors. Therefore, we expressed human Hyal-1 in a prokaryotic and in an insect cell system to produce larger amounts of the purified enzyme. In Escherichia coli, Hyal-1 formed inclusion bodies and was refolded in vitro after purification by metal ion affinity chromatography. However, the enzyme was produced with extremely low folding yields (0.5%) and exhibited a low specific activity (0.1 U/mg). Alternatively, Hyal-1 was secreted into the medium of stably transfected Drosophila Schneider-2 (DS-2) cells. After several purification steps, highly pure enzyme with a specific activity of 8.6 U/mg (consistent with the reported activity of human Hyal-1 from plasma) was obtained. Both Hyal-1 enzymes showed pH profiles similar to the hyaluronidase of human plasma with an activity maximum at pH 3.5-4.0. Deglycosylation of Hyal-1, expressed in DS-2 cells, resulted in a decrease in the enzymatic activity determined by a colorimetric hyaluronidase activity assay. Purified Hyal-1 from DS-2 cells was used for the investigation of the inhibitory activity of new ascorbic acid derivatives. Within this series, l-ascorbic acid tridecanoate was identified as the most potent inhibitor with an IC(50) of 50 +/- 4 microM comparable with glycyrrhizic acid.  相似文献   

4.
It has long been known that liver lysosomes contain an endoglycosidase activity able to degrade the high molecular mass glycosaminoglycan hyaluronic acid (HA). The identification and cloning of a hyaluronidase with an acidic pH optimum, Hyal-1, suggested it might be responsible for this activity. However, we previously reported that this hydrolase could only be detected in pre-lysosomal compartments of the mouse liver using a zymography technique that allows the detection of Hyal-1 activity after SDS–PAGE (“renatured protein zymography”). Present work reveals that the activity highlighted by this technique belongs to a precursor form of Hyal-1 and that the lysosomal HA endoglycosidase activity of the mouse liver is accounted for by a proteolytically processed form of Hyal-1 that can only be detected using “native protein zymography”. Indeed, the distribution of this form follows the distribution of β-galactosidase, a well-established lysosomal marker, after fractionation of the mouse liver in a linear sucrose density gradient. In addition, both activities shift toward the lower density region of the gradient when a specific decrease of the lysosomal density is induced by Triton WR-1339 injection. The fact that only native protein zymography but not renatured protein zymography is able to detect Hyal-1 activity in lysosomes points to a non-covalent association of Hyal-1 proteolytic fragments or the existence of closely linked partners supporting Hyal-1 enzymatic activity. The knockdown of Hyal-1 results in an 80% decrease of total acid hyaluronidase activity in the mouse liver, confirming that Hyal-1 is a key actor of HA catabolism in this organ.  相似文献   

5.
It has long been predicted that the members of the hyaluronidase enzyme family have important non-enzymatic functions. However, their nature remains a mystery. The metabolism of hyaluronan (HA), their major enzymatic substrate, is also enigmatic. To examine the function of Hyal2, a glycosylphosphatidylinositol-anchored hyaluronidase with intrinsically weak enzymatic activity, we have compared stably transfected rat fibroblastic BB16 cell lines with various levels of expression of Hyal2. These cell lines continue to express exclusively the standard form (CD44s) of the main HA receptor, CD44. Hyal2, CD44, and one of its main intracellular partners, ezrin-radixin-moesin (ERM), were found to co-immunoprecipitate. Functionally, Hyal2 overexpression was linked to loss of the glycocalyx, the HA-rich pericellular coat. This effect could be mimicked by exposure of BB16 cells either to Streptomyces hyaluronidase, to HA synthesis inhibitors, or to HA oligosaccharides. This led to shedding of CD44, separation of CD44 from ERM, reduction in baseline level of ERM activation, and markedly decreased cell motility (50% reduction in a wound healing assay). The effects of Hyal2 on the pericellular coat and on CD44-ERM interactions were inhibited by treatment with the Na+/H+ exchanger-1 inhibitor ethyl-N-isopropylamiloride. We surmise that Hyal2, through direct interactions with CD44 and possibly some pericellular hyaluronidase activity requiring acidic foci, suppresses the formation or the stability of the glycocalyx, modulates ERM-related cytoskeletal interactions, and diminishes cell motility. These effects may be relevant to the purported in vivo tumor-suppressive activity of Hyal2.  相似文献   

6.
Hyaluronan (HA) is a glycosaminoglycan composed of N-acetylglucosamine and glucuronic acid subunits. Endocytosis is thought to play an essential role in the catabolism of HA due to the intracellular compartmentalization of the HA degrading hyaluronidase enzymes. Previous investigations have shown that keratinocytes, chondrocytes and breast tumor cell lines endocytose HA via the cell surface glycoprotein, CD44. However, other cell types endocytose HA using a CD44-independent mechanism that remains to be defined. The purpose of this study was to investigate HA endocytosis in B16-F10 melanoma cells. We found that B16-F10 melanoma cells expressed CD44 on their surfaces. Unexpectedly, CD44 did not play a role in the endocytosis of HA. Electron microscopy studies revealed that B16-F10 melanoma cells exhibited membrane ruffling, a characteristic feature of macropinocytosis, only after incubating the cells with the HA co-polymer. Moreover, B16-F10 melanoma cells endocytosed HA via macropinocytosis as assessed by drug inhibition studies and the co-localization of fluorescently labeled HA with fluorescent tracers under confocal microscopy. Based on these results, we conclude that induced macropinocytosis may provide a previously unrecognized avenue for HA endocytosis in some cell types.  相似文献   

7.
Hyaluronic acid (HA), an important component of the extracellular matrix, plays a crucial role for cumulus cell expansion. Genes and proteins involved in HA synthesis and its receptor CD44 are expressed in cumulus oocyte complexes (COCs) in different animal species and increase during maturation. Hyaluronidase enzymes (Hyal) degrade HA into smaller biologically active HA fragments. To investigate the effects of the molecular size and concentration of HA on oocyte maturation and further embryo development, bovine oocytes were matured in vitro in the presence or absence of HA, Hyal-2 or 4-methylumbelliferone (4-MU); an HA synthesis inhibitor. The rates of oocyte nuclear maturation to metaphase II stage and development of embryos to blastocyst stage and blastocyst quality were recorded. Hyal-2 inhibited cumulus cell expansion without affecting oocyte maturation and further embryo development. Whereas, 4-MU at 1 mm reduced cumulus cell expansion, oocyte maturation rate and further embryo development; an effect which was partially abrogated by exogenous HA supplementation. These data suggest that HA production by cumulus cells during maturation is essential not only for cumulus cell expansion, but also for oocyte maturation and further embryo development. This effect is not affected by HA-degradation by Hyal-2.  相似文献   

8.
The availability of recombinant expression systems for the production of purified human hyaluronidases PH-20 and Hyal-1 facilitated the first detailed analysis of the enzymatic reaction products. The human recombinant enzymes, both expressed by Drosophila Schneider-2 (DS-2) cells, were compared to bovine testicular hyaluronidase (BTH), a commercially available hyaluronidase preparation, which has long been considered a prototype of mammalian hyaluronidases. The conversion of low molecular weight hyaluronic acid (HA) fragments was detected by a capillary zone electrophoresis (CZE) method. Surprisingly, the HA hexasaccharide, which is generally accepted to be the minimum substrate of BTH, was not a substrate of recombinant human PH-20 and Hyal-1. However, HA octasaccharide was converted efficiently by both enzymes, thus representing the minimum substrate for human PH-20 and Hyal-1. Additionally, BTH was shown to catabolize the HA hexasaccharide at pH 4.0 mainly by hydrolysis, while at pH 6.0 transglycosylation prevailed. Human PH-20 was found to catalyze both hydrolysis and transglycosylation of the HA octasaccharide. On the contrary, human Hyal-1 converted the HA octasaccharide mainly by hydrolysis with transglycosylation products occurring only at high substrate concentrations (> or = 500 microM). The differences between the hyaluronidase subtypes and isoenzymes were much more prominent than expected. Obviously, the different hyaluronidase subtypes have evolved into very specialized enzymes with respect to their catalytic mechanism of action.  相似文献   

9.
Serum hyaluronidase aberrations in metabolic and morphogenetic disorders   总被引:1,自引:0,他引:1  
Hyaluronidases are endo-glycosidases that degrade both hyaluronan (hyaluronic acid) (HA) and chondroitin sulfates. Deficiency of hyaluronidase activity has been predicted to result in a phenotype similar to that observed in mucopolysaccharidosis (MPS). In the present study, we surveyed a variety of patients with phenotypes similar to those observed in MPS, but without significant mucopolysacchariduria to determine if some are based on aberrations in serum hyaluronidase (Hyal-1) activity. The study included patients with well-characterized dysmorphic disorders occurring on genetic basis, as well as those of unkown etiology. The purpose of the study was to establish how wide spread were abnormalities in levels of circulating Hyal-1 activity. A simple and sensitive semi-quantitative zymographic procedure was used for the determination of activity. Levels of both beta-N-acetylglucosaminidase and beta-glucuronidase whose activities contribute to the total breakdown of hyaluronan (HA) were also measured, as well as the concentration of circulating HA. Among 48 patients with bone or connective tissue abnormalities, low levels of Hyal-1 activity were found in six patients compared to levels in 100 healthy donors (2.0-3.2 units/microL vs 6(+/- 1 SE) units/microL). These six patients exhibited a wide spectrum of clinical abnormalities, in particular shortened extremities: they included three patients with unknown causes of clinical symptoms, one patient with Sanfilippo disease, one of the seven patients with achondroplasia, and one with hypophosphotemic rickets. Normal levels of serum Hyal-1 activities were found in patients with Morquio disease, GM1 gangliosidosis, I cell-disease, 6 of the 7 patients with achondroplasia, Marfan's-syndrome and Ehlers-Danlos syndrome. No patient totally lacked serum Hyal-1 activity. Serum HA concentration was elevated in patients with Sanfilippo A and I-cell disease. Determination of serum and leukocyte Hyal-1 and serum HA may be useful to evaluate patients with metabolic and morphogenetic disorders.  相似文献   

10.
11.
CD44 shedding occurs in osteoarthritic chondrocytes. Previous work of others has suggested that the hyaluronidase isoform HYAL2 has the capacity to bind to CD44, a binding that may itself induce CD44 cleavage. Experiments were developed to elucidate whether chondrocyte HYAL2: (1) was exposed on the extracellular plasma membrane of chondrocytes, (2) bound to CD44, (3) underwent shedding together with CD44 and lastly, (4) exhibited hyaluronidase activity within a near-neutral pH range. Enhancing CD44 shedding by IL-1β resulted in a proportional increase in HYAL2 released from human and bovine chondrocytes into the medium. CD44 knockdown by siRNA also resulted in increased accumulation of HYAL2 in the media of chondrocytes. By hyaluronan zymography only activity at pH 3.7 was observed and this activity was reduced by pre-treatment of chondrocytes with trypsin. CD44 and HYAL2 were found to co-immunoprecipitate, and to co-localize within intracellular vesicles and at the plasma membrane. Degradation of hyaluronan was visualized by agarose gel electrophoresis. With this approach, hyaluronidase activity could be observed at pH 4.8 under assay conditions in which CD44 and HYAL2 binding remained intact; additionally, weak hyaluronidase activity could be observed at pH 6.8 under these conditions. This study suggests that CD44 and HYAL2 are bound at the surface of chondrocytes. The release of HYAL2 when CD44 is shed could provide a mechanism for weak hyaluronidase activity to occur within the more distant extracellular matrix of cartilage.  相似文献   

12.
Hyaluronan catabolism: a new metabolic pathway   总被引:5,自引:0,他引:5  
A new pathway of intermediary metabolism is described involving the catabolism of hyaluronan. The cell surface hyaluronan receptor, CD44, two hyaluronidases, Hyal-1 and Hyal-2, and two lysosomal enzymes, beta-glucuronidase and beta-N-acetylglucosaminidase, are involved. This metabolic cascade begins in lipid raft invaginations at the cell membrane surface. Degradation of the high-molecular-weight extracellular hyaluronan occurs in a series of discreet steps generating hyaluronan chains of decreasing sizes. The biological functions of the oligomers at each quantum step differ widely, from the space-filling, hydrating, anti-angiogenic, immunosuppressive 10(4)-kDa extracellular polymer, to 20-kDa intermediate polymers that are highly angiogenic, immuno-stimulatory, and inflammatory. This is followed by degradation to small oligomers that can induce heat shock proteins and that are anti-apoptotic. The single sugar products, glucuronic acid and a glucosamine derivative are released from lysosomes to the cytoplasm, where they become available for other metabolic cycles. There are 15 g of hyaluronan in the 70-kg individual, of which 5 g are cycled daily through this pathway. Some of the steps in this catabolic cascade can be commandeered by cancer cells in the process of growth, invasion, and metastatic spread.  相似文献   

13.
Devising a pathway for hyaluronan catabolism: are we there yet?   总被引:9,自引:0,他引:9  
Stern R 《Glycobiology》2003,13(12):105R-115R
Hyaluronan is a negatively charged, high molecular weight glycosaminoglycan found predominantly in the extracellular matrix. Intracellular locations for hyaluronan have also been documented in cytoplasm, nucleus, and nucleolus. The polymer has an extraordinarily high rate of turnover in vertebrate tissues. The focus here is to formulate a metabolic pathway for hyaluronan degradation using all available data, including the recently acquired information on the hyaluronidase gene family. Such a catabolic scheme has defied explication up to now. In somatic tissues, stepwise processing occurs, from the extracellular high molecular weight space filling, antiangiogenic approximately 107-kDa polymer, to intermediate sized highly angiogenic, inflammatory, and immune-stimulating fragments, and ultimately to tetrasaccharides that are antiapoptotic and potent inducers of heat-shock proteins. It is proposed that the high molecular weight extracellular polymer is tethered to the cell surface by the combined efforts of hyaluronan receptors and hyaluronidase-2 (Hyal-2). The hyaluronan is cleaved to a 20-kDa intermediate-sized fragment, the limit product of Hyal-2 digestion. These fragments are delivered to endosomal- and ultimately lysosomal-like structures. Further catabolism occurs there by Hyal-1, coordinated with the activity of two lysosomal beta-exoglycosidases, beta-glucuronidase and beta-N-acetyl-glucosaminidase. A membrane-associated mini-organelle is postulated, the hyaluronasome, in which coordinated synthetic and catabolic enzyme reactions occur. The hyaluronasome can respond to the physiological states of the cell by a series of membrane-bound and soluble hyaluronan-associated receptors, binding proteins, and cofactors that trigger enzymatic events and signal transduction pathways. These in turn can be modulated by the amounts and sizes of the hyaluronan polysaccharides generated in the catabolic cascade. Most of these highly dynamic interactions remain to be determined. It is also proposed that malignant cells can commandeer some of these interactions for facilitating tumor growth and spread.  相似文献   

14.
Hyaluronan, a high-molecular-weight glycosaminoglycan of cartilage, is deposited directly into the extracellular space by hyaluronan synthases, while hyaluronan catabolism is mediated by the hyaluronidases. An in vitro cell culture system has been established in which human dermal fibroblasts are induced to undergo chondrogenesis. Here, we describe the differential modulation of the hyaluronidases and the up-regulation of the hyaluronan receptor, CD44, during such chondrogenesis. Dermal fibroblasts, plated in micromass cultures in the presence of lactic acid and staurosporine for 24 h, were then placed in serum-free, chemically defined medium. At 3 days, RNA was extracted and RT-PCR performed using primers for the hyaluronidase genes. Marked increase in HYAL1 expression was observed, with only moderate increases occurring in HYAL2 and HYAL3. No expression of HYAL4 and PH-20, the sperm-associated hyaluronidase, was detected. RNA levels correlated well with changes in hyaluronidase enzyme activity. Finally, greater expression and staining for the hyaluronan receptor, CD44s, the standard form, were detected. Differential expression of the somatic hyaluronidases and CD44-mediated hyaluronan turnover play a critical role in cartilage development from mesenchymal precursors.  相似文献   

15.
Bovine testicular hyaluronidase (BTH) has been used as a spreading factor for many years and was primarily characterized by its enzymatic activity. As recombinant human hyaluronidases are now available the bovine preparations can be replaced by the human enzymes. However, data on the pH-dependent activity of hyaluronidases reported in literature are inconsistent in part or even contradictory. Detection of the pH-dependent activity of PH-20 type hyaluronidases, i.e. recombinant human PH-20 (rhPH-20) and BTH, showed a shift of the pH optimum from acidic pH values in a colorimetric activity assay to higher pH values in a turbidimetric activity assay. Contrarily, recombinant human Hyal-1 (rhHyal-1) and bee venom hyaluronidase (BVH) exhibited nearly identical pH profiles in both commonly used types of activity assays. Analysis of the hyaluronic acid (HA) degradation products by capillary zone electrophoresis showed that hyaluronan was catabolized by rhHyal-1 continuously into HA oligosaccharides. BTH and, to a less extent, rhPH-20 exhibited a different mode of action: at acidic pH (pH 4.5) HA was degraded as described for rhHyal-1, while at elevated pH (pH 5.5) small oligosaccharides were produced in addition to HA fragments of medium molecular weight, thus explaining the pH-dependent discrepancies in the activity assays. Our results suggest a sub-classification of mammalian-type hyaluronidases into a PH-20/BTH and a Hyal-1/BVH subtype. As the biological effects of HA fragments are reported to depend on the size of the molecules it can be speculated that different pH values at the site of hyaluronan degradation may result in different biological responses.  相似文献   

16.
Hyaluronidase expression in human skin fibroblasts   总被引:2,自引:0,他引:2  
Hyaluronidase activity has been detected for the first time in normal human dermal fibroblasts (HS27), as well as in fetal fibroblasts (FF24) and fibrosarcoma cells (HT1080). Enzymatic activity was secreted predominantly into the culture media, with minor amounts of activity associated with the cell layer. In both classes of fibroblasts, hyaluronidase expression was confluence-dependent, with highest levels of activity occurring in quiescent, post-confluent cells. However, in the fibrosarcoma cell cultures, expression was independent of cell density. The enzyme had a pH optimum of 3.7 and on hyaluronan substrate gel zymography, activity occurred as a single band corresponding to an approximate molecular size of 57 kDa. The enzyme could be immunoprecipitated in its entirety using monoclonal antibodies raised against Hyal-1, human plasma hyaluronidase. PCR confirmed that fibroblast hyaluronidase was identical to Hyal-1. The conclusion by previous investigators using earlier technologies that fibroblasts do not contain hyaluronidase activity should be reevaluated.  相似文献   

17.
The concentration and molecular weight of hyaluronan often dictates its physiological function. Consequently full characterisation of the anabolic products and turnover rates of HA could facilitate understanding of the role that HA metabolism plays in disease processes. In order to achieve this it is necessary to interrupt the dynamic balance between concurrent HA synthesis and degradation, achievable through the inhibition of the hyaluronidases, a group of enzymes which degrade HA. The sulphated polysaccharide, dextran sulphate has been demonstrated to competitively inhibit testicular hyaluronidase in a non-biological system, but its application to in vitro biological systems had yet to be developed and evaluated. This study determined the inhibitory concentrations of dextran sulphate against both testicular and Streptomyces hyaluronidase in a cell-free and breast cancer model followed by characterisation of the effect that hyaluronidase inhibition exerted on HA synthesis and degradation. The IC(100) of dextran sulphate for both hyaluronidases in a cell-free and biological system was determined to be >or=400 microg/ml. At concentrations up to 10 mg/ml the dextran sulphate did not effect breast cancer cell proliferation or morphology, while at 400 microg/ml HA degradation was totally inhibited, enabling an accurate quantitation of HA production as well as characterisation of the cell-associated and liberated HA. FACS quantitation of the HA receptor CD44, HA synthase and the hyaluronidases HYAL 1 and HYAL 2 demonstrated that dextran sulphate down-regulated CD44 and HA synthase while upregulating the hyaluronidases. These results suggest dynamic feedback signalling and complex mechanisms occur in the net deposition of HA in vivo.  相似文献   

18.
Hyaluronan (HA) accumulates in vascular disease but its functional role is not fully understood. To investigate the impact of HA enriched extracellular matrices (ECM) on cell phenotype, arterial smooth muscle cells (ASMCs) were transduced with retroviral constructs (LXSN) encoding murine has-1, has-2, and has-3. HA synthesis was significantly elevated in has transduced ASMCs. Metabolically labeled HA from has-1 and has-2 transduced cells was present mostly in high molecular weight (HWA) fractions (2-10x10(6) Da), whereas HA produced by has-3 and control cells was present in lower molecular weight fractions (approximately 2x10(6) Da). Both has-1 and has-3 transduced ASMCs accumulated more pericellular HA than has-2 transduced ASMCs. All has transduced ASMCs had attenuated growth and migration rates, and a decreased detachment response. Affinity histochemistry revealed that has-1 transduced ASMCs accumulated the greatest amount of HA containing ECM than the other transduced ASMCs. This ECM was hyaluronidase sensitive and bound a significantly greater number of monocytes than the ECM generated by has-2 or has-3 transduced ASMCs. Confocal microscopy showed CD44 positive monocytes bound to hyaluronidase sensitive ECM in has-1 transduced ASMCs. These data implicate specific has isoforms in the formation of HA enriched pro-inflammatory ECMs.  相似文献   

19.
Interaction between hyaluronic acid (HA) and CD44 has been considered a key event in tumor invasion and metastasis. HA is a linear, high molecular weight glycosaminoglycan in its native state, but fragmented low molecular forms are found at sites of neoplastic or inflammatory infiltrates. Both high and low molecular weights HA are involved in diverse biological functions. In this study, we used two clonal variants of a T cell murine lymphoma designated LBLa and LBLc. These cell lines were found to differ in their in vivo and in vitro growth rates. LBLa grew faster and exhibited an enhanced invasive capacity as compared to LBLc. In contrast, cell lines did not differ in the expression of surface markers (CD8, CD24, CD25, CD44, and CD18), or in their capacity to bind HA. However, LBLa cells exhibited higher capacity to migrate to low molecular weight HA than did LBLc. Migration was mediated by CD44 since it was abrogated by anti-CD44 monoclonal antibody as well as by hyaluronidase. We suggest that interaction between CD44 and low molecular weight HA may trigger migration mechanisms in LBLa cells, thus contributing to enhanced invasive cell capacity.  相似文献   

20.
CD44 is an integral membrane glycoprotein of approximately 90 kDa which has been implicated in the binding of hyaluronate to the cell surface. The expression of CD44 in astrocytes was investigated by means of indirect immunofluorescence on cultured cells. The vast majority of these cells were found to express CD44. Western blot analysis of these cells revealed a highly polydisperse species having an M(r) corresponding to 74-86 kDa. In order to visualize hyaluronate-binding cells, living cultures were probed with fluorescein-conjugated hyaluronate (FI-HA). Some astrocytes were able to bind FI-HA, provided that they were first treated with hyaluronidase. Streptomyces hyaluronidase, which is hyaluronate-specific, was effective in exposing the hyaluronate-binding capacity of these cells. This leads one to conclude that hyaluronate is bound to the surface of these cells and that it masks their capacity to bind hyaluronate. Provided that they were first treated with hyaluronidase, the U-87 MG (glioblastoma-astrocytoma), U-373 MG (glioblastoma), and Hs 683 (glioma) cell lines were also able to bind FI-HA. The U-138 MG (glioblastoma) cell line was unable to bind FI-HA, with or without prior hyaluronidase treatment. A quantitative assay was developed with the use of [3H]hyaluronate ([3H]HA). This revealed the binding to be highly specific, inasmuch as the addition of unlabeled hyaluronate, but not other glycosaminoglycans, was effective in inhibiting the binding of the [3H]HA. An anti-CD44 monoclonal antibody, 50B4, was able to inhibit the binding of the [3H]HA to the U-373 MG cell line. In this cell line, then, CD44 functions as a hyaluronate receptor and one may infer that this is also the case in some astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号