共查询到20条相似文献,搜索用时 15 毫秒
1.
We purified active hydrogenase from free-living Rhizobium japonicum by affinity chromatography. The uptake hydrogenase of R. japonicum has been treated previously as an oxygen-sensitive protein. In this purification, however, reducing agents were not added nor was there any attempt to exclude oxygen. In fact, the addition of sodium dithionite to aerobically purified protein resulted in the rapid loss of activity. Purified hydrogenase was more stable when stored under O2 than when stored under Ar. Sodium-chloride-washed hydrogen-oxidizing membranes were solubilized in Triton X-100 and deoxycholate and loaded onto a reactive red 120-agarose column. Purified hydrogenase elutes at 0.36 M NaCl, contains a nickel, and has a pH optimum of 6.0. There was 452-fold purification resulting in a specific activity of 76.9 mumol of H2 oxidized per min per mg of protein and a yield of 17%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed subunits with estimated molecular weights of 65,000 and 33,000. Hydrogenase prepared in this manner was used to raise and affinity purify antibodies against both subunits. 相似文献
2.
Immunoelectron microscopy was combined with partial characterization of isolated exopolysaccharide to study binding of soybean lectin by Rhizobium japonicum strain USDA 138. Lectin-binding activity resided in two forms of exopolysaccharide produced during growth: an apparently very high-molecular-weight capsular form and a lower-molecular-weight diffusible form. At low-speed centrifugation, the capsular form cosedimented with cells to form a viscous, white, cell-gel complex which was not diffusible in 1% agar, and the diffusible form remained in the cell-free supernatant. Electron microscopic observation of the cell-gel complex after labeling with soybean lectin-ferritin conjugate revealed that capsular polysaccharides, frequently attached to one end of the cells, were receptors for lectin. The outer membrane of the cell bound no lectin. Various preparations of exopolysaccharide isolated from the culture supernatant were tested for lectin binding, interaction with homologous somatic antigen, and the presence of 2-keto-3-deoxyoctonate and were chromatographed in Sepharose 4B and 6B gel beds. Lectin binding was restricted to a polysaccharide component designated as lectin-binding polysaccharide. This polysaccharide, as present in the cell-free culture supernatant, was a diffusible acidic polysaccharide devoid of 2-keto-3-deoxyoctonate, with a molecular weight of 2 X 10(6) to 5 X 10(6). It was concluded that the soybean lectin-binding component of R. japonicum is an extracellular polysaccharide and not a lipopolysaccharide and that the diffusible lectin-binding polysaccharide probably differs from the very high-molecular-weight lectin-binding polysaccharide of the loose capsule (slime) only in the degree of polymerization. 相似文献
3.
A competence factor (CF) from Rhizobium japonicum was partially purified to 43 fold on Sephadex G-100. This CF preparation was sensitive to heat, trypsin and pronase, was resistant to DNase 1, RNase A and lysozyme. It had an approximate mol. wt. of 82,000. Osmotic shock treatment of competent cells revealed that the CF is located in the periplasmic region of the cell.Abbreviations CF
competence factor
- BSA
bovine serum albumin
- YM
yeast mannitol medium 相似文献
4.
The fate of an inoculum strain of Rhizobium japonicum was studied using a genetically marked strain I-11O subline carrying resistance markers for azide, rifampin, and streptomycin (I-110 ARS). At the time of planting into a field populated with R. japonicum, seeds of soybean cultivars Kent and Peking were inoculated with varying cell densities of strain I-110 ARS. At various times during the growing season, surface-sterilized root nodules were examined for the presence of the inoculum strain by plating onto selective media. The recovery of the inoculum strain was unambiguous, varying, in the case of Kent cultivar, from about 5% with plants (sampled at 51 days) that had been inoculated with 3 X 10(8) cells per cm of row to about 20% with plants (sampled at 90 days) that had been inoculated with 3 X 10(9) cells per cm. The symbiotically incompatible interaction of Peking and strain 110 in Rhizobium-populated field soil was confirmed by the finding that at 60 days after planting, only one nodule in 360 sampled contained strain I-110 ARS. The use of genetically marked Rhizobium bacteria was found to provide for precise identification of the inoculum strain in nodules of field-grown soybeans. 相似文献
6.
The fate of an inoculum strain of Rhizobium japonicum was studied using a genetically marked strain I-11O subline carrying resistance markers for azide, rifampin, and streptomycin (I-110 ARS). At the time of planting into a field populated with R. japonicum, seeds of soybean cultivars Kent and Peking were inoculated with varying cell densities of strain I-110 ARS. At various times during the growing season, surface-sterilized root nodules were examined for the presence of the inoculum strain by plating onto selective media. The recovery of the inoculum strain was unambiguous, varying, in the case of Kent cultivar, from about 5% with plants (sampled at 51 days) that had been inoculated with 3 X 10(8) cells per cm of row to about 20% with plants (sampled at 90 days) that had been inoculated with 3 X 10(9) cells per cm. The symbiotically incompatible interaction of Peking and strain 110 in Rhizobium-populated field soil was confirmed by the finding that at 60 days after planting, only one nodule in 360 sampled contained strain I-110 ARS. The use of genetically marked Rhizobium bacteria was found to provide for precise identification of the inoculum strain in nodules of field-grown soybeans. 相似文献
7.
Serine hydroxymethyltransferase has been purified 1,550-fold from the plant fraction of soybean ( Glycine max [L]. Merr. cv Williams) nodules. The pH optimum for the enzyme was at 8.5. The native molecular weight was 230,000 with a subunit molecular weight of 55,000 which suggested a tetramer of identical subunits. The enzyme kinetics for the enzyme were Michaelis-Menten; there was no evidence for cooperativity in the binding of either substrates or product inhibitors. There were two Km values for serine at 1.5 and 40 millimolar. The Km for l-tetrahydrofolate was 0.25 millimolar. l-Methyl-, l-methenyl-, and l-methylene-tetrahydrofolates were all noncompetitive inhibitors with l-tetrahydrofolate with Ki values of 1.8, 3.0, and 2.9 millimolar, respectively. Glycine was a competitive inhibitor with serine with a Ki value of 3.0 millimolar. The intersecting nature of the double reciprocal plots together with the product inhibition data suggested an ordered mechanism with serine the first substrate to bind and glycine the last product released. The enzyme was insensitive to a wide range of metabolites which have previously been reported to affect its activity. These results are discussed with respect to the roles of serine hydroxymethyltransferase and the one-carbon metabolite pool in control of the carbon flow to the purine biosynthetic pathway in ureide biogenesis. 相似文献
8.
We found the occurrence of thermophilic reversible γ-resorcylate decarboxylase (γ-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa by gel filtration, and that of the subunit was 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; in other words, the enzyme was a homotetramer. The enzyme was induced specifically by the addition of γ-resorcylate to the medium. The enzyme required no coenzyme and did not act on 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3,5-dihydroxybenzoate, 2-hydroxybenzoate, or 3-hydroxybenzoate. It was relatively thermostable to heat treatment, and its half-life at 50°C was estimated to be 122 min; furthermore, it catalyzed the reverse carboxylation of resorcinol. The values of kcat/ Km (mΜ −1·s −1) for γ-resorcylate and resorcinol at 30°C and pH 7 were 13.4 and 0.098, respectively. The enzyme contains 327 amino acid residues, and sequence identities were found with those of hypothetical protein AGR C 4595p from Agrobacterium tumefaciens strain C58 (96% identity), 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis (32%), and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylases from Bacillus cereus ATCC 10987 (26%), Rattus norvegicus (26%), and Homo sapiens (25%). The genes ( graA [1,230 bp], graB [888 bp], and graC [1,056 bp]) that are homologous to those in the resorcinol pathway also exist upstream and downstream of the γ-RDC gene. Judging from these results, the resorcinol pathway also exists in Rhizobium sp. strain MTP-10005, and γ-RDC probably catalyzes a reaction just before the hydroxylase in it does. 相似文献
9.
By using hydrophobic interaction as the first chromatographic stage, we purified to homogeneity reverse gyrase, an ATP-dependent DNA topoisomerase I, isolated from the thermoacidophilic archaebacterium Sulfolobus acidocaldrius. This procedure allowed quick and complete separation of reverse gyrase from nucleases and DNA binding proteins present in Sulfolobus. The final product was revealed, by SDS-PAGE, as a unique band with an apparent molecular mass of 128 kDa, and the amino acid composition was determined. Western blotting experiments with antibodies raised against reverse gyrase indicate that no proteolysis occurred during the purification course. Gel filtration and sedimentation data gave a Stokes radius of 42 A and a sedimentation coefficient of 5.7 S, suggesting a monomeric structure for the native enzyme which was confirmed by electron microscopy. Finally, pure reverse gyrase in a monomeric state was still able to promote positive supercoiling of the DNA. 相似文献
10.
An eight-iron, eight-sulfur ferredoxin from Rhizobium japonicum bacteroids of soybean root nodules has been purified to apparent homogeneity as judged by disc gel electrophoresis. The purification procedure included chromatography on DEAE-cellulose, Bio-Gel P-60, and hydroxylapatite. Specific activities of several purified preparations of bacteroid ferredoxin ranged from 1700 to 1900 nmol of C2H4 produced . min-1 . mg-1 in the reaction mediating electron transfer between illuminated chloroplasts and bacteroid nitrogenase. A molecular weight of 6740 for the protein was determined by low speed sedimentation equilibrium and a molecular weight of 6500 was estimated from the mobility of bacteroid ferredoxin relative to the mobility of standard proteins during sodium dodecyl sulfate disc gel electrophoresis. All of the common amino acids were present except arginine, methionine, and tryptophan. The absorbance spectrum of the oxidized protein exhibited maxima at 285 nm and 380 nm with a shoulder near 305 nm. The A380/A285 ratio was 0.76 and the extinction coefficient at 380 nm for the oxidized protein was found to be 30,800 M-1. Equilibration of bacteroid ferredoxin with methyl viologen at various potentials revealed a midpoint oxidation-reduction potential of -484 mV. Spectrophotometric examination of iron-sulfur clusters extruded from bacteroid ferredoxin with benzenethiol and the transfer of its iron-sulfur clusters to other ferredoxins established the presence of two [4Fe-4S] clusters in a molecule of bacteroid ferredoxin. The EPR spectrum of oxidized ferredoxin consisted of a small signal at g = 2.02 integrating to 0.19 spin/molecule. The EPR spectrum of ferredoxin reduced with 5-deazaflavin exhibited a signal with features at g values of 1.88, 1.94, 2.01, and 2.07, and integrated to 1.7 spins/molecule. The EPR properties of bacteroid ferredoxin are characteristic of a ferredoxin operating between the 1+ and 2+ oxidation levels. Bacteroid ferredoxin mediated electron transfer to clostridial hydrogenase, but was not reduced by the clostridial phosphoroclastic system in the presence of pyruvate. Bacteroid ferredoxin reduced by illuminated 5-deazariboflavin also supported a high rate of C2H2 reduction by bacteroid nitrogenase which was free of Na2S2O4. It was concluded, on this basis, that bacteroid ferredoxin has the capability of functioning as the electron donor for nitrogenase in R. japonicum. 相似文献
11.
Pyruvate kinase (PK, EC 2.7.1.40) was partially purified from the plant cytosolic fraction of N 2-fixing soybean ( Glycine max [L.] Merr.) root nodules. The partially purified PK preparation was completely free of contamination by phospho enol pyruvate carboxylase (PEPC, EC 4.1.1.31), the other major phospho enol pyruvate (PEP)-utilizing enzyme in legume root nodules. Latency experiments with sonicated nodule extracts showed that Bradyrhizobium japonicum bacteroids do not express either PK or PEPC activity in symbiosis. In contrast, free-living B. japonicum bacteria expressed PK activity, but not PEPC activity. Antibodies specific for the cytosolic isoform of PK from castor bean endosperm cross-reacted with a 52-kDa polypeptide in the partially purified PK preparation. At the optimal assay pH (pH 8.0 for PEPC and pH 6.9 for PK) and in the absence of malate, PEPC activity in crude nodule extracts was 2.6 times the corresponding PK activity. This would tend to favour PEP metabolism by PEPC over PEP metabolism by PK. However, at pH 7.0 in the presence of 5 m M malate, PEPC activity was strongly inhibited, but PK activity was unaffected. Thus, we propose that PK and PEPC activity in legume root nodules may be coordinately regulated by fluctuations in malate concentration in the plant cytosolic fraction of the bacteroid-containing cells. Reduced uptake of malate by the bacteroids, as a result of reduced rates of N 2 fixation, may favour PEP metabolism by PK over PEP metabolism by PEPC. 相似文献
12.
The relationship between single leaf photosynthesis and conductance was examined in cotton ( Gossypium hirsutum L.) across a range of environmental conditions. The purpose of this research was to separate and define the degree of stomatal and nonstomatal limitations in the photosynthetic process of field-grown cotton. Photosynthetic rates were related to leaf conductance of upper canopy leaves in a curvilinear manner. Increases in leaf conductance of CO2 in excess of 0.3 to 0.4 mole per square meter per second did not result in significant increases in gross or net photosynthetic rates. No tight coupling between environmental influences on photosynthetic rates and those affecting conductance levels was evident, since photosynthesis per unit leaf conductance did not remain constant. Slowly developing water stress caused greater reductions in photosynthesis than in leaf conductance, indicating nonstomatal limitations of photosynthesis. Increases in external CO2 concentration to levels above ambient did not produce proportional increases in photosynthesis even though substomatal or intercellular CO2 concentration increased. The lack of a linear increase in photosynthetic rate in response to increases in leaf conductance and in response to increases in external CO2 concentration demonstrated that nonstomatal factors are major photosynthetic rate determinants of cotton under field conditions. 相似文献
13.
The nitrate reductase (NR, EC 1.6.6.1) activity in root nodules formed by hydrogenase positive (Hup +) and hydrogenase negative (Hup −) Rhizobium leguminosarum strains was examined in symbioses with the pea cultivar Alaska ( Pisum sativum L.), Rates of activity were determined by the in vivo assay in nodules from plants that were only N 2-dependent or grown in the presence of 2 m M KNO 3. The rates varied widely among strains, regardless of the Hup phenotype of the R. leguminosarum strain used for inoculation, but the overall results indicated that nodules formed by Hup − strains accumulated more nitrite in the incubation medium than did those with Hup − phenotypes. Total plant dry weight and reduced nitrogen content of pea plants grown in the presence of 2 m M KNO 3 and inoculated with single Hup + and Hup − R. leguminosarum strains were statistically different among some strains. These observations suggest that the possible advantages derived from the presence of the Hup system on whole plant growth may be counteracted by the higher rates of NR activity in the Hup − strains in the R. leguminosarum -pea symbiosis. 相似文献
14.
An investigation has been conducted to identify electron transport carriers that participate in the oxidation of H2 by H2 uptake-positive strains of Rhizobium japonicum bacteroids. We have observed that the reduced form of dibromothymoquinone at a concentration of 0.2 mM strongly inhibited H2 uptake, endogenous respiration, and C2H2 reduction by bacteroid suspensions. Reduced dibromothymoquinone, however, failed to inhibit the transfer of electrons from H2 to methylene blue under anaerobic conditions, indicating that the hydrogenase per se is insensitive to this inhibitor. Metronidazole, at 1 mM, affected rates of H2 uptake and endogenous respiration only slightly, but strongly inhibited C2H2 reduction. Evidence for H2-dependent cytochrome reduction in an H2 uptake-positive strain of R. japonicum bacteroids is presented. In kinetic studies, the rates of reduction of the type b and c cytochromes in the presence of H2 were shown to be severalfold higher than the rates due to endogenous respiration alone. With hydrogenase-deficient mutants of R. japonicum, no measurable effect of H2 on cytochrome reduction was observed. Our results indicate that ubiquinone and cytochromes of types b and c are involved in the oxyhydrogen reaction in R. japonicum. 相似文献
15.
In contrast to the wild type, H2 uptake-constitutive mutants of Rhizobium japonicum expressed both hydrogenase and ribulose bisphosphate carboxylase activities when grown heterotrophically. However, as bacteroids from soybean root nodules, the H2 uptake-constitutive mutants, like the wild type, did not express ribulose bisphosphate carboxylase activity. 相似文献
16.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, P nirK- lacZ , P norC- lacZ , and P nosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N 2-dependent or grown in the presence of 4 m M KNO 3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO 3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function. 相似文献
17.
Summary
Rhizobium japonicum strain 8-0 Str R applied as inoculum to Clark 63 soybeans formed small ineffective nodules which had very low nitrogenase activity compared to nodules formed by two effective strains, 110 Tet R and 138 Kan R. Mean numbers of cells per milligram of nodule tissue for plants up to 34 days old were 7.7×10 6 for 8-0 Str R, 4.1×10 8 for 110 Tet R and 7.6×10 8 for 138 Kan R. Cell counts per unit mass of nodule were independent of plant age for strains 110 Tet R and 138 Kan R, however, for strain 8-0 Str R, 25 and 34 days old plants had fewer viable cells per nodule mass than 18 day old plants. When a mixture of two effective strains was used, the nodules of individual plants were predominantly caused by either 110 Tet R or 138 Kan R. In one experiment the predominance was random, but in another, strain 110 Tet R clearly dominated. Strain 138 Kan R was absent in some nodules on 18 day old plants, and in others, less than 10 2 cells per nodule were found. When strains 8-0 Str R and 138 Kan R were used as mixed inoculum, most of the nodules had strain 8-0 Str R but strain 138 Kan R was detected in many nodules and was generally evident in the largest nodules. Nitrogenase activity by many individual nodules was low except for nodules which had cells of 138 Kan R. Nitrogenase activity by whole root systems of these plants was relatively high and similar to plants that had only nodules of strain 138 Kan R. Similar relationships were observed for a mixed inoculum of 8-0 Str R and 110 Tet R. In general, mixed inoculations resulted in nodules with a particular strain being dominant for each individual plant. Double infections within individual nodules were not uncommon and such nodules often had disproportionate numbers of cells of two competing R. japonicum strains.Contribution from the Laboratory of Soil Microbiology, Department of Agronomy, Missouri Agricultural Experiment Station. Missouri Journal Series Number 7967. 相似文献
18.
The uptake hydrogenase (hydrogen:ferricytochrome c3 oxidoreductase, EC 1.12.2.1) from the bacteroids of soybean root nodules infected with Rhizobium japonicum 110 has been purified and characterized. Bacteroids were prepared, then broken by sonication. The particulate enzyme was solubilized by treatment with Triton X-100 and further purified by polyethylene glycol fractionation, DEAE-cellulose and Sephadex G-100 chromatography. The specific activity has been increased 196-fold to 19.6 units/mg protein. The molecular weight is 63 300 as determined by gel filtration and 65 300 as determined by SDS-polyacrylamide gel electrophoresis, indicating that the enzyme is a monomer. The enzyme is O2 sensitive, with a half-life of 70 min when exposed to air. The pH optimum of the solubilized enzyme is near 5.5; the Km for H2 is 1.4 microM. Suitable electron acceptors are methylene blue, ferricyanide, 2,6-dichlorophenolindophenol, and cytochrome c. Benzyl viologen is reduced slowly; methyl viologen, NAD(P)+, FAD, FMN, and O2 are not reduced. The optimum temperature for activity is 65-70 degrees C with an activation energy of 9.2 kcal. H2 evolution by the enzyme has been demonstrated. The hydrogenase is well-suited to function in an environment where all the available H2 is generated in situ. 相似文献
19.
Strain-specific antisera were produced against six Bradyrhizobium japonicum strains using two immunization procedures. These specific antisera were used for detection of bradyrhizobia in preserved soybean nodules. Antisera specific for two of these strains were either conjugated with a fluorescent dye or used with a fluorescent secondary antibody for identification of bradyrhizobia in soybean nodules that were preserved in four different storage conditions. Results show that soybean nodules dried in the oven, stored under room temperature, or at –20 °C are as suitable as fresh nodules for strain identification using fluorescent antisera. 相似文献
20.
Soybean ( Glycine soja var Beeson) formate dehydrogenase has been isolated, purified, and partially characterized by affinity chromatography. The enzyme is a dimer having a total molecular weight of 100,000 and a subunit weight of 47,000. It has activity over a broad pH range, is stable for months at 4°C, and has Km values of 0.6 millimolar and 5.7 micromolar for formate and NAD, respectively. 相似文献
|