首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We have investigated the novel function of intracellular reactive oxygen species (ROS) in the activation of in situ tissue transglutaminase (tTGase) by lysophosphatidic acid (LPA) and transforming growth factor-beta (TGF-beta) in Swiss 3T3 fibroblasts. LPA induced a transient increase of intracellular ROS with a maximal increase at 10 min, which was blocked by ROS scavengers, N-acetyl-L-cysteine and catalase. LPA activated tTGase with a maximal increase at 1h, which was inhibited by cystamine and ROS scavengers. Incubation with exogenous H(2)O(2) activated tTGase. TGF-beta also activated tTGase with a maximal activation at 2h and the tTGase activation was inhibited by the ROS scavengers. Scrape-loading of C3 transferase inhibited the ROS production and in situ tTGase activation by LPA and TGF-beta, and the inhibitory effect of C3 transferase was reversed by exogenous H(2)O(2). Microinjection of GTPgammaS inhibited transamidating activity of tTGase stimulated by LPA, TGF-beta, and maitotoxin. These results suggested that intracellular ROS was essential for the activation of in situ tTGase in response to LPA and TGF-beta.  相似文献   

4.
5.
Yu QB  Li G  Wang G  Sun JC  Wang PC  Wang C  Mi HL  Ma WM  Cui J  Cui YL  Chong K  Li YX  Li YH  Zhao Z  Shi TL  Yang ZN 《Cell research》2008,18(10):1007-1019
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.  相似文献   

6.
Comprehensive analysis of protein-protein interactions is a challenging endeavor of functional proteomics and has been best explored in the budding yeast. The yeast protein interactome analysis was achieved first by using the yeast two-hybrid system in a proteome-wide scale and next by large-scale mass spectrometric analysis of affinity-purified protein complexes. While these interaction data have led to a number of novel findings and the emergence of a single huge network containing thousands of proteins, they suffer many false signals and fall short of grasping the entire interactome. Thus, continuous efforts are necessary in both bioinformatics and experimentation to fully exploit these data and to proceed another step forward to the goal. Computational tools to integrate existing biological knowledge buried in literature and various functional genomic data with the interactome data are required for biological interpretation of the huge protein interaction network. Novel experimental methods have to be developed to detect weak, transient interactions involving low abundance proteins as well as to obtain clues to the biological role for each interaction. Since the yeast two-hybrid system can be used for the mapping of the interaction domains and the isolation of interaction-defective mutants, it would serve as a technical basis for the latter purpose, thereby playing another important role in the next phase of protein interactome research.  相似文献   

7.
8.
Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-down potential in vivo targets of Y nitration in the Arabidopsis thaliana proteome. Further shotgun liquid chromatography-mass spectrometry (LC-MS/MS) proteomic analysis of the immunoprecipitated proteins allowed the identification of 127 proteins. Around 35% of them corresponded to homologues of proteins that have been previously reported to be Y nitrated in other non-plant organisms. Some of the putative in vivo Y-nitrated proteins were further confirmed by western blot with specific antibodies. Furthermore, MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of protein spots, separated by two-dimensional electrophoresis from immunoprecipitated proteins, led to the identification of seven nitrated peptides corresponding to six different proteins. However, in vivo nitration sites among putative targets could not be identified by MS/MS. Nevertheless, an MS/MS spectrum with 3-aminoY318 instead of the expected 3-nitroY was found for cytosolic glyceraldehyde-3-phosphate dehydrogenase. Reduction of nitroY to aminoY during MS-based proteomic analysis together with the in vivo low abundance of these modifications made the identification of nitration sites difficult. In turn, in vitro nitration of methionine synthase, which was also found in the shotgun proteomic screening, allowed unequivocal identification of a nitration site at Y287.  相似文献   

9.
10.
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes. Many telomere-binding proteins bind to telomeric repeat sequences and further generate T-loops in animals. However, it is not clear if they regulate telomere organization using epigenetic mechanisms and how the epigenetic molecules are involved in regulating the telomeres. Here, we show direct interactions between the telomere-binding protein, AtTRB2 and histone deacetylases, HDT4 and HDA6, in vitro and in vivo. AtTRB2 mediates the associations of HDT4 and HDA6 with telomeric repeats. Telomere elongation is found in AtTRB2, HDT4 and HDA6 mutants over generations, but also in met1 and cmt3 DNA methyltransferases mutants. We also characterized HDT4 as an Arabidopsis H3K27 histone deacetylase. HDT4 binds to acetylated peptides at residue K27 of histone H3 in vitro, and deacetylates this residue in vivo. Our results suggest that AtTRB2 also has a role in the regulation of telomeric chromatin as a possible scaffold protein for recruiting the epigenetic regulators in Arabidopsis, in addition to its telomere binding and length regulation activity. Our data provide evidences that epigenetic molecules associate with telomeres by direct physical interaction with telomere-binding proteins and further regulate homeostasis of telomeres in Arabidopsis thaliana.  相似文献   

11.
Arabidopsis cDNAs encoding ATJ11, the smallest known J-domain protein, have been isolated and characterized. The precursor protein of 161 amino acid residues was synthesized in vitro and imported by isolated pea chloroplasts where it was localized to the stroma and cleaved to a mature protein of 125 amino acid residues. The mature protein consists of an 80 amino acid J-domain, and N- and C-terminal extensions of 24 and 21 amino acid residues, respectively, which show no similarity to regions in other DnaJ-related proteins. ATJ11 produced in Escherichia coli stimulated the weak ATPase activity of E. coli DnaK, but was unable to stimulate refolding of firefly luciferase by DnaK, and inhibited refolding by DnaK, DnaJ and GrpE. ATJ11 is encoded by a single-copy gene on chromosome 4, and is expressed in all plant organs examined. A paralogue of ATJ11, showing 72% identity, is encoded in a 4.5 Mb duplication of chromosome 4 on chromosome 2. These proteins represent a novel class of J-domain proteins.  相似文献   

12.
Cleaning the GenBank Arabidopsis thaliana data set.   总被引:2,自引:1,他引:2       下载免费PDF全文
Data driven computational biology relies on the large quantities of genomic data stored in international sequence data banks. However, the possibilities are drastically impaired if the stored data is unreliable. During a project aiming to predict splice sites in the dicot Arabidopsis thaliana, we extracted a data set from the A.thaliana entries in GenBank. A number of simple 'sanity' checks, based on the nature of the data, revealed an alarmingly high error rate. More than 15% of the most important entries extracted did contain erroneous information. In addition, a number of entries had directly conflicting assignments of exons and introns, not stemming from alternative splicing. In a few cases the errors are due to mere typographical misprints, which may be corrected by comparison to the original papers, but errors caused by wrong assignments of splice sites from experimental data are the most common. It is proposed that the level of error correction should be increased and that gene structure sanity checks should be incorporated--also at the submitter level--to avoid or reduce the problem in the future. A non-redundant and error corrected subset of the data for A.thaliana is made available through anonymous FTP.  相似文献   

13.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   

14.
15.
16.
17.
Protein-L-isoaspartate (D-aspartate) O-methyltransferases (EC 2.1.1.77) that catalyze the transfer of methyl groups from S-adenosylmethionine to abnormal L-isoaspartyl and D-aspartyl residues in a variety of peptides and proteins are widely distributed in procaryotes and eucaryotes. These enzymes participate in the repair of spontaneous protein damage by facilitating the conversion of L-isoaspartyl and D-aspartyl residues to normal L-aspartyl residues. In this work, we have identified an L-isoaspartyl methyltransferase activity in Arabidopsis thaliana, a dicotyledonous plant of the mustard family. The highest levels of activity were detected in seeds. Using degenerate oligonucleotides corresponding to two highly conserved amino acid regions shared among the Escherichia coli, wheat, and human enzymes, we isolated and sequenced a full-length genomic clone encoding the A. thaliana methyltransferase. Several methyltransferase cDNAs were also characterized, including ones that would encode full-length polypeptides of 230 amino acid residues. Messenger RNAs for the A. thaliana enzyme were found in a variety of tissues that did not contain significant amounts of active enzyme suggesting the possibility of translational or posttranslational controls on methyltransferase levels. We have identified a putative abscisic acid-response element (ABRE) in the 5-untranslated region of the A. thaliana L-isoaspartyl methyltransferase gene and have shown that the expression of the mRNA is responsive to exogenous abscisic acid (ABA), but not to the environmental stresses of salt or drought. The expression of the A. thaliana enzyme appears to be regulated in a distinct fashion from that seen in wheat or in animal tissues.  相似文献   

18.
An Arabidopsis thaliana cDNA clone encoding a novel 110 amino acid thylakoid protein has been sequenced. The in vitro synthesized protein is taken up by intact chloroplasts, inserted into the thylakoid membrane and the transit peptide is cleaved off during this process. The mature protein is predicted to contain 69 amino acids, to form one membrane-spanning -helix and to have its N-terminus at the stromal side of the thylakoid membrane. The protein showed similarity to the LHC, ELIP and PsbS proteins of higher plants, but more pronounced to the high-light-inducible proteins (HLIPs) of cyanobacteria and red algae, to which no homologue previously has been detected in higher plants. As for HLIP and ELIP, high light increases the mRNA levels of the corresponding gene. Sequence comparisons indicate that the protein may bind chlorophyll and form dimers in the thylakoid membrane. The level of expression of the protein seems to be far lower than that of normal PSI and PSII subunits.  相似文献   

19.
20.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The DeltaPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from Y(D)(ox) radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S(2)Q(A)(-) and S(2)Q(B)(-) charge recombinations were stabilized in DeltaPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of Y(D)(+)Q(A)(-) recombination, pointed to the donor side modifications in DeltaPsbR. EPR measurements revealed that S(1)-to-S(2)-transition and S(2)-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in Q(A) to Q(B) electron transfer in DeltaPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号