首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beatty GE  Provan J 《Molecular ecology》2010,19(22):5009-5021
Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596 bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O. secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia.  相似文献   

2.
The ranges of arctic-alpine species have shifted extensively with Pleistocene climate changes and glaciations. Using sequence data from the trnH-psbA and trnT-trnL chloroplast DNA spacer regions, we investigated the phylogeography of the widespread, ancient (>3 million years) arctic-alpine plant Oxyria digyna (Polygonaceae). We identified 45 haplotypes and six highly divergent major lineages; estimated ages of these lineages (time to most recent common ancestor, T(MRCA)) ranged from ~0.5 to 2.5 million years. One lineage is widespread in the arctic, a second is restricted to the southern Rocky Mountains of the western United States, and a third was found only in the Himalayan and Altai regions of Asia. Three other lineages are widespread in western North America, where they overlap extensively. The high genetic diversity and the presence of divergent major cpDNA lineages within Oxyria digyna reflect its age and suggest that it was widespread during much of its history. The distributions of individual lineages indicate repeated spread of Oxyria digyna through North America over multiple glacial cycles. During the Last Glacial Maximum it persisted in multiple refugia in western North America, including Beringia, south of the continental ice, and within the northern limits of the Cordilleran ice sheet. Our data contribute to a growing body of evidence that arctic-alpine species have migrated from different source regions over multiple glacial cycles and that cryptic refugia contributed to persistence through the Last Glacial Maximum.  相似文献   

3.
Glacial cycles have played a dominant role in shaping the genetic structure and distribution of biota in northwestern North America. The two major ice age refugia of Beringia and the Pacific Northwest were connected by major mountain chains and bordered by the Pacific Ocean. As a result, numerous refugial options were available for the regions taxa during glacial advances. We reviewed the importance of glaciations and refugia in shaping northwestern North America’s phylogeographic history. We also tested whether ecological variables were associated with refugial history. The recurrent phylogeographic patterns that emerged were the following: (i) additional complexity, i.e. refugia within refugia, in both Beringia and the Pacific Northwest; and (ii) strong evidence for cryptic refugia in the Alexander Archipelago and Haida Gwaii, the Canadian Arctic and within the ice‐sheets. Species with contemporary ranges that covered multiple refugia, or those with high dispersal ability, were significantly more likely to have resided in multiple refugia. Most of the shared phylogeographic patterns can be attributed to multiple refugial locales during the last glacial maximum or major physiographic barriers like rivers and glaciers. However, some of the observed patterns are much older and appear connected to the orogeny of the Cascade‐Sierra chain or allopatric differentiation during historic glacial advances. The emergent patterns from this review suggest we should refine the classic Beringian‐southern refugial paradigm for northwestern North American biota and highlight the ecological and evolutionary consequences of colonization from multiple refugia.  相似文献   

4.
The separation of populations by ice sheets into large refugia can account for much of the genetic diversity found in present day populations. The evolutionary implications of small glacial refugia have not been as thoroughly explored. To examine refugial origins of North American mountain sheep Ovis spp., we analyzed a 604 bp portion of the mitochondrial DNA (mtDNA) control region from 223 O. dalli and O. canadensis. Major refugia were identified in eastern Beringia and southern North America, and we found evidence for two smaller refugia situated between the Laurentide and Cordilleran glaciers. Our results are the first to demonstrate support for survival of any organism in the latter two refugia. These refugia also appear to have conserved a genetic signal that confirms past hybridization of O. dalli and O. canadensis.  相似文献   

5.
Aim Glacial refugia during the Pleistocene had major impacts on the levels and spatial apportionment of genetic diversity of species in northern latitude ecosystems. We characterized patterns of population subdivision, and tested hypotheses associated with locations of potential Pleistocene refugia and the relative contribution of these refugia to the post‐glacial colonization of North America and Scandinavia by common eiders (Somateria mollissima). Specifically, we evaluated localities hypothesized as ice‐free areas or glacial refugia for other Arctic vertebrates, including Beringia, the High Arctic Canadian Archipelago, Newfoundland Bank, Spitsbergen Bank and north‐west Norway. Location Alaska, Canada, Norway and Sweden. Methods Molecular data from 12 microsatellite loci, the mitochondrial DNA (mtDNA) control region, and two nuclear introns were collected and analysed for 15 populations of common eiders (n = 716) breeding throughout North America and Scandinavia. Population genetic structure, historical population fluctuations and gene flow were inferred using F‐statistics, analyses of molecular variance, and multilocus coalescent analyses. Results Significant inter‐population variation in allelic and haplotypic frequencies were observed (nuclear DNA FST = 0.004–0.290; mtDNA ΦST = 0.051–0.927). Whereas spatial differentiation in nuclear genes was concordant with subspecific designations, geographic proximity was more predictive of inter‐population variance in mitochondrial DNA haplotype frequency. Inferences of historical population demography were consistent with restriction of common eiders to four geographic areas during the Last Glacial Maximum: Belcher Islands, Newfoundland Bank, northern Alaska and Svalbard. Three of these areas coincide with previously identified glacial refugia: Newfoundland Bank, Beringia and Spitsbergen Bank. Gene‐flow and clustering analyses indicated that the Beringian refugium contributed little to common eider post‐glacial colonization of North America, whereas Canadian, Scandinavian and southern Alaskan post‐glacial colonization is likely to have occurred in a stepwise fashion from the same glacial refugium. Main conclusions Concordance of proposed glacial refugia used by common eiders and other Arctic species indicates that Arctic and subarctic refugia were important reservoirs of genetic diversity during the Pleistocene. Furthermore, suture zones identified at MacKenzie River, western Alaska/Aleutians and Scandinavia coincide with those identified for other Arctic vertebrates, suggesting that these regions were strong geographic barriers limiting dispersal from Pleistocene refugia.  相似文献   

6.
Aim Beringia, the unglaciated region encompassing the former Bering land bridge, as well as the land between the Lena and Mackenzie rivers, is recognized as an important refugium for arctic plants during the last ice age. Compelling palaeobotanical evidence also supports the presence of small populations of boreal trees within Beringia during the Last Glacial Maximum. The occurrence of balsam poplar (Populus balsamifera) in Beringia provides a unique opportunity to assess the implications of persistence in a refugium on present‐day genetic diversity for this boreal tree species. Location North America. Methods We sequenced three variable non‐coding regions of the chloroplast genome (cpDNA) from 40 widely distributed populations of balsam poplar across its North American range. We assessed patterns of genetic diversity, geographic structure and historical demography between glaciated and unglaciated regions of the balsam poplar’s range. We also utilized a coalescent model to test for divergence between regions. Results Levels of genetic diversity were consistently greater for populations at the southern margin (θW = 0.00122) than in the central (θW = 0.00086) or northern (θW = 0.00034) regions of the current distribution of balsam poplar, and diversity decreased with increasing latitude (R2 = 0.49, P < 0.01). We detected low, but significant, structure (FCT = 0.05, P = 0.05), among regions of P. balsamifera’s distribution. The cpDNA genealogy was shallow, however, showing an absence of highly differentiated chloroplast haplotypes. Coalescent analyses supported a model of divergence between the southern ice margin and the northern unglaciated region of balsam poplar’s distribution, but analyses of other regional comparisons did not converge. Main conclusions The palaeobotanical record supports the presence of a Beringian refugium for balsam poplar, but we were unable to definitively identify the presence of known refugial populations based on genetic data alone. Balsam poplar populations from Beringia are not a significant reservoir of cpDNA diversity today. Unique alleles that may have been present in the small, isolated populations that survived within Beringia were probably lost through genetic drift or swamped by post‐glacial, northward migration from populations south of the ice sheets.  相似文献   

7.
Waltari E  Cook JA 《Molecular ecology》2005,14(10):3005-3016
Phylogeographical investigations of arctic organisms provide spatial and temporal frameworks for interpreting the role of climate change on biotic diversity in high-latitude ecosystems. Phylogenetic analyses were conducted on 473 base pairs of the mitochondrial control region in 192 arctic hares (Lepus arcticus, Lepus othus, Lepus timidus) and two individual Lepus townsendii. The three arctic hare species are closely related. All L. othus individuals form one well-supported clade, L. arcticus individuals form two well-supported clades, and L. timidus individuals are scattered throughout the phylogeny. Arctic hare distribution was altered dramatically following post-Pleistocene recession of continental ice sheets. We tested for genetic signatures of population expansion for hare populations now found in deglaciated areas. Historical demographic estimates for 12 arctic hare populations from throughout their range indicate that L. arcticus and L. othus persisted in two separate North American arctic refugia (Beringia and High Canadian Arctic) during glacial advances of the Pleistocene, while the high genetic diversity in L. timidus likely reflects multiple Eurasian refugia.  相似文献   

8.
ABSTRACT: Some decades ago, biogeographers distinguished three major faunal types of high importance for Europe: (i) Mediterranean elements with exclusive glacial survival in the Mediterranean refugia, (ii) Siberian elements with glacial refugia in the eastern Palearctic and only postglacial expansion to Europe and (iii) arctic and/or alpine elements with large zonal distributions in the periglacial areas and postglacial retreat to the North and/or into the high mountain systems. Genetic analyses have unravelled numerous additional refugia both of continental and Mediterranean species, thus strongly modifying the biogeographical view of Europe. This modified notion is particularly true for the so-called Siberian species, which in many cases have not immigrated into Europe during the postglacial period, but most likely have survived the last, or even several glacial phases, in extra-Mediterranean refugia in some climatically favourable but geographically limited areas of southern Central and Eastern Europe. Recently, genetic analyses revealed that typical Mediterranean species have also survived the Last Glacial Maximum in cryptic northern refugia (e.g. in the Carpathians or even north of the Alps) in addition to their Mediterranean refuge areas.  相似文献   

9.
We address the impact of the ice age cycles on intraspecific cpDNA diversity, for the first time on the full circumboreal-circumarctic scale. The bird-dispersed bog bilberry (or arctic blueberry, Vaccinium uliginosum) is a key component of northern ecosystems and is here used to assess diversity in previously glaciated vs. unglaciated areas and the importance of Beringia as a refugium and source for interglacial expansion. Eighteen chloroplast DNA haplotypes were observed in and among 122 populations, grouping into three main lineages which probably diverged before, and thus were affected more or less independently by, all major glaciations. The boreal 'Amphi-Atlantic lineage' included one haplotype occurring throughout northern Europe and one occurring in eastern North America, suggesting expansion from at least two bottlenecked, glacial refugium populations. The boreal 'Beringian lineage' included seven haplotypes restricted to Beringia and the Pacific coast of USA. The 'Arctic-Alpine lineage' included nine haplotypes, one of them fully circumpolar. This lineage was unexpectedly diverse, also in previously glaciated areas, suggesting that it thrived on the vast tundras during the ice ages and recolonized deglaciated terrain over long distances. Its largest area of persistence during glaciations was probably situated in the north, stretching from Beringia and far into Eurasia, and it probably also survived the last glaciation in southern mountain ranges. Although Beringia apparently was important for the initial divergence and expansion of V. uliginosum as well as for continuous survival of both the Beringian and Arctic-Alpine lineages during all ice ages, this region played a minor role as a source for later interglacial expansions.  相似文献   

10.
As part of a large international Arctic biodiversity expedition (Tundra Northwest '99), we examined the distribution of members of the arctic Daphnia pulex complex (Cladocera, Anomopoda) from 121 tundra ponds, spread across 16 sites spanning a large portion of arctic Canada (i.e. from 62 degrees 22' N to 79 degrees 01' N; 66 degrees 45' W to 139 degrees 37' W). Using allozyme electrophoresis and mitochondrial (mt)DNA analyses, we examined the population genetic (clonal) structure of these populations. The following taxa were detected in this complex: Daphnia pulicaria, D. middendorffiana and D. tenebrosa. Clear geographical differences in mean clonal richness and diversity were observed, with most western sites exhibiting higher clonal richness and diversity, than sites in the eastern Canadian Arctic. For both the pulicaria group (i.e. D. pulicaria and D. middendorffiana) and D. tenebrosa, the highest mean regional clonal richness was detected from the southern section of Banks Island, an unglaciated site situated on the edge or directly in the eastern fringe of the Beringian glacial refuge. A significant negative correlation was found between geographical distance from the Beringian edge, and overall regional clonal richness (i.e. sites closer to the edge harboured greater clonal richness). These results clearly indicate that more recently deglaciated regions (i.e. eastern Canadian Arctic) harbour lower levels of clonal richness than western regions nearer Beringia. We discuss the role that glacial refugia have played in influencing both biotic and genetic diversity in arctic taxa.  相似文献   

11.
Past glaciation events have played a major role in shaping the genetic diversity and distribution of wild sheep in North America. The advancement of glaciers can isolate populations in ice‐free refugia, where they can survive until the recession of ice sheets. The major Beringian refugium is thought to have held thinhorn sheep (Ovis dalli) populations during times of glacial advance. While isolation in the major refugium can account for much of the genetic and morphological diversity seen in extant thinhorn sheep populations, mounting evidence suggests the persistence of populations in smaller minor refugia. We investigated the refugial origins of thinhorn sheep using ~10 000 SNPs obtained via a cross‐species application of the domestic sheep ovine HD BeadChip to genotype 52 thinhorn sheep and five bighorn sheep (O. canadensis) samples. Phylogenetic inference revealed a distinct lineage of thinhorn sheep inhabiting British Columbia, which is consistent with the survival of a group of thinhorn sheep in a minor refugium separate from the Beringian refugium. Isolation in separate glacial refugia probably mediated the evolution of the two thinhorn sheep subspecies, the white Dall's sheep (O. d. dalli), which persisted in Beringia, and the dark Stone's sheep (O. d. stonei), which utilized the minor refugium. We also found the first genetic evidence for admixture between sheep from different glacial refugia in south‐central Yukon as a consequence of post glacial expansion and recolonization. These results show that glaciation events can have a major role in the evolution of species inhabiting previously glaciated habitats and the need to look beyond established refugia when examining the evolutionary history of such species.  相似文献   

12.
Aim  Late Pleistocene ice sheets are thought to have covered most of western Canada, including all of British Columbia (BC). We examine patterns of genetic variation in an Arctic–alpine plant to evaluate the possibility of full glacial refugia within the area covered by the Cordilleran ice sheet (CIS) and to uncover post-glacial migration routes.
Location  Western North America.
Methods  We sampled 1030 individuals of the Arctic–alpine plant Oxyria digyna from 117 populations distributed over much of its range in western and northern North America. DNA haplotypes were identified using restriction site analysis of two chloroplast DNA intergene spacer regions, psb A- trn H and trn T-L. We examined the geographical distribution of haplotype diversity in relation to latitude, and also compared various indices of diversity in putatively glaciated and unglaciated regions. Patterns of migration were inferred using nested clade analysis.
Results  We detected a total of 20 haplotypes. High haplotype diversity was found in Beringia, in unglaciated western USA, and in northern BC at 57–59° N, well within the accepted limits of the CIS. Ancestral haplotypes were also centred in northern BC.
Main conclusions  High genetic diversity of Oxyria digyna is expected in unglaciated regions, but unexpected in northern BC if British Columbia was entirely covered by ice during the late Pleistocene. Our observations suggest the presence of unglaciated areas providing late Pleistocene refugia in northern BC. Such refugia would have important implications for the origins and migrations of many plant and animal species in north-western North America.  相似文献   

13.
It has been suggested that many arctic-alpine plant species have limited dispersal ability and cannot have arrived in Scandinavia and the arctic archipelago of Svalbard by long-distance dispersal after a total glaciation. It has therefore been proposed that such species must have survived the entire glaciation(s) in ice-free refugia in southern Norway, northern Norway and Svalbard. We investigated random amplified polymorphic DNA (RAPD) variation among 28 populations from Norway and Svalbard of one of these arctic-alpine 'short-distance dispersers', the selfing polyploid Saxifraga cespitosa . In an analysis of molecular variance ( AMOVA ), more variation was found among populations within the three postulated refugia regions (45%) than among these regions (25%). Spatial autocorrelation (Mantel) analyses showed that the genetic distance monotonously increased with increasing geographical distance. In UPGMA and PCO analyses, the populations from Norway and Svalbard formed a south–north cline that continued across the Barents Sea barrier. The results suggest that there has been recent dispersal among the three postulated refugia regions and thus that postglacial dispersal into these refugia regions from other distant areas also must represent a possibility. The observed geographical pattern of the genetic variation may have been established after expansion from different source areas outside the North European ice sheet and/or from different refugia areas 'within' the ice sheet, but it is probably not possible to distinguish among these alternatives. The results for S. cespitosa are consistent with a dynamic late- and postglacial scenario with extensive plant dispersal, and support the conclusion from our previous study of the outbreeding Saxifraga oppositifolia ; the hypothesis of glacial survival in Norway and/or Svalbard is superfluous.  相似文献   

14.
Cryptic northern refugia beyond the ice limit of the Pleistocene glaciations may have had significant influence on the current pattern of biodiversity in Arctic regions. In order to evaluate whether northern glacial refugia existed in the Canadian Arctic, we examined mitochondrial DNA phylogeography in the northernmost species of rodents, the collared lemming (Dicrostonyx groenlandicus) sampled across its range of distribution in the North American Arctic and Greenland. The division of the collared lemming into the Canadian Arctic and eastern Beringia phylogroups does not support postglacial colonization of the North American Arctic from a single eastern Beringia refugium. Rather, the phylogeographical structure and sparse fossil records indicate that, during the last glaciation, some biologically significant refugia and important sources of postglacial colonization were located to the northwest of the main ice sheet in the Canadian Arctic.  相似文献   

15.
The probability of population extinction seems to differ within the species range. Populations occupying former glacial refugia could harbor substantial genetic resources, hence they should be less prone to extirpation. It was hypothesized that the shrub birch Betula humilis could have survived the Last Glacial Maximum (LGM) at the current southwestern margin of its range. Using ten nuclear microsatellites, we studied genetic variation within and between 18 localities of B. humilis situated in marginal and subcentral areas. Six marginal populations were located in areas covered by an ice sheet during the LGM, and the remaining samples came from unglaciated areas. Analysis of private allele frequencies as well as hierarchical AMOVAs conducted for geographical regions, marginal versus central populations, and glaciated versus unglaciated areas did not confirm the hypothesis of glacial isolate of the shrub birch in southeastern Poland. On the other hand, very high genetic variation in some localities in northeastern Poland was found. Survival in periglacial areas followed by broad-fronted colonization or the existence of an admixture zone of phylogeographic lineages was proposed to explain this phenomenon.  相似文献   

16.
Recent studies suggest that alpine and arctic organisms may have distinctly different phylogeographic histories from temperate or tropical taxa, with recent range contraction into interglacial refugia as opposed to post-glacial expansion out of refugia. We use a combination of phylogeographic inference, demographic reconstructions, and hierarchical Approximate Bayesian Computation to test for phylodemographic concordance among five species of alpine-adapted small mammals in eastern Beringia. These species (Collared Pikas, Hoary Marmots, Brown Lemmings, Arctic Ground Squirrels, and Singing Voles) vary in specificity to alpine and boreal-tundra habitat but share commonalities (e.g., cold tolerance and nunatak survival) that might result in concordant responses to Pleistocene glaciations. All five species contain a similar phylogeographic disjunction separating eastern and Beringian lineages, which we show to be the result of simultaneous divergence. Genetic diversity is similar within each haplogroup for each species, and there is no support for a post-Pleistocene population expansion in eastern lineages relative to those from Beringia. Bayesian skyline plots for four of the five species do not support Pleistocene population contraction. Brown Lemmings show evidence of late Quaternary demographic expansion without subsequent population decline. The Wrangell-St. Elias region of eastern Alaska appears to be an important zone of recent secondary contact for nearctic alpine mammals. Despite differences in natural history and ecology, similar phylogeographic histories are supported for all species, suggesting that these, and likely other, alpine- and arctic-adapted taxa are already experiencing population and/or range declines that are likely to synergistically accelerate in the face of rapid climate change. Climate change may therefore be acting as a double-edged sword that erodes genetic diversity within populations but promotes divergence and the generation of biodiversity.  相似文献   

17.
Douglas‐fir (Pseudotsuga menziesii) is one of numerous wide‐range forest tree species represented by subspecies/varieties, which hybridize in contact zones. This study examined the genetic structure of this North American conifer and its two hybridizing varieties, coastal and Rocky Mountain, at intervarietal and intravarietal level. The genetic structure was subsequently associated with the Pleistocene refugial history, postglacial migration and intervarietal hybridization/introgression. Thirty‐eight populations from the USA and Canada were genotyped for 13 nuclear SSRs and analyzed with simulations and traditional population genetic structuring methods. Eight genetic clusters were identified. The coastal clusters embodied five refugial populations originating from five distinct refugia. Four coastal refugial populations, three from California and one from western Canada, diverged during the Pleistocene (56.9–40.1 ka). The three Rocky Mountain clusters reflected distinct refugial populations of three glacial refugia. For Canada, ice covered during the Last Glacial Maximum, we present the following three findings. (1) One refugial population of each variety was revealed in the north of the distribution range. Additional research including paleodata is required to support and determine whether both northern populations originated from cryptic refugia situated south or north of the ice‐covered area. (2) An interplay between intravarietal gene flow of different refugial populations and intervarietal gene flow by hybridization and introgression was identified. (3) The Canadian hybrid zone displayed predominantly introgressants of the Rocky Mountain into the coastal variety. This study provides new insights into the complex Quaternary dynamics of this conifer essential for understanding its evolution (outside and inside the native range), adaptation to future climates and for forest management.  相似文献   

18.
The population genetic structure of many high‐latitude species in North America was affected by the last glaciation, and current structure reflects isolation in refugia and colonisation patterns. Large ice‐free areas, both south of the ice sheets and in the north‐west, supported numerous flora and fauna throughout this period. Fossil evidence suggests additional western glacial refugia existed both on Haida Gwaii (the Queen Charlotte Islands) and in northern Idaho. The chestnut‐backed chickadee Poecile rufescens is a songbird found along the western edge of Canada and the United States, with a linear distribution along the coast, and an isolated interior population. Mitochondrial DNA sequence data (control region and ATPase 6–8) from 10 populations (n = 122) were used to test for population genetic structure. The data supported a general north/south separation. Haida Gwaii was found to be genetically distinct from the rest of the populations, and the two northern British Columbia populations separated from all but Alaska. The interior population showed evidence of both historical isolation and secondary colonisation by birds from coastal populations. Neutrality tests suggested a past population expansion in all populations from previously glaciated areas, and a stable population in areas believed to be unglaciated. This pattern supports the use of multiple glacial refugia by the chestnut‐backed chickadee. We could not reject the use of Haida Gwaii or the interior (i.e. Clearwater Basin) as glacial refugia.  相似文献   

19.
A fourth species of the Holarctic Ilybius angustior complex, Ilybius minakawai n. sp., is described from the Island of Sakhalin in the Russian far east. Male genitalia are diagnostic within this species complex, although from body size and shape the new species cannot be separated from I. churchillensis Wallis from north Alaska and the Canadian low arctic. The small and narrow body characteristic of these two species represents an extreme of the cold climate form of the widespread I. angustior (Gyllenhal). Low variation within the studied large ribosomal and cytochrome c oxidase subunit I mitochondrial genes suggest that speciation events within the I. angustior-complex are fairly recent. In combination with known geographical ranges, the low genetic variation within this species complex suggest speciation within Pleistocene refugia including Beringia.  相似文献   

20.
A morphometric study of Potentilla nivea, P unijlora, and P hookeriana, as well as the close relative of the latter, P furcata, has been carried out, and the quantitative data subjected to Canonical Discriminant Analysis. The four taxa belong to the arctic-alpine section Niveae of Potentilla, and material for the analysis was collected in Alaska, U. S. A. The a priori defined groups are based on petiole hair type, the qualitative, and only, character traditionally used to distinguish taxa within Potentilla sect. Niveae. The hair types recognized previously by taxonomists have been vaguely defined, and the intraspecific variation of other morphological characters has never been discussed. Ordination by canonical discriminant analysis was performed to characterize mean differences among species, to obtain insight into group differences, and to estimate character weights from correlations between canonical variates and original variables. The four taxa differ significantly in the canonical analysis of six quantitative characters. Leaflet length, incision depth (length of leaflet teeth), and ovule number are shown to be the most important discriminators. A key to the four taxa, taking into account the intra- vesus interspecific variation, as well as character weights, is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号