首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat fragmentation can markedly influence the levels of pollen deposition and seed production in natural populations, and rare plants may be especially susceptible to any associated reductions in pollen quantity and quality. In order to ascertain the potential for pollen limitation of maternal fitness in a rare plant, Silene douglasii var. oraria, which is endemic to western coastal prairies, we counted ovules and measured conspecific and heterospecific pollen deposition on stigmas collected from open-pollinated plants. We further investigated the effect of increasing pollen intensity on fruit production, seed number and weight, as well as several measures of progeny vigor. Three levels of outcross pollen were added to plant stigmas for comparison with autogamous and open pollination in the largest naturally occurring population. Both seed and fruit production were significantly greater (P<0.05) for supplemented versus nonsupplemented stigmas, but flowers receiving different levels of pollen addition were statistically indistinguishable. Seed germination and seedling survival were also lowest for the offspring of nonsupplemented flowers; however, in natural populations, opportunities for pollen competition are very limited since open-pollinated flowers averaged fewer viable pollen grains than ovules. Seed production was equivalent for open- and autogamously pollinated flowers in 1996, indicating that natural pollen transfer may have involved mostly self pollen. Overall, the low reproductive success of var. oraria likely reflects both low pollen quantity and quality. Multiyear empirical studies of pollen intensity in field populations are needed so that we can better understand the fitness consequences of pollen limitation in rare perennials.  相似文献   

2.
Recent reviews of rare plant reintroduction success indicate that far fewer studies have been conducted with seeds than whole plants, and of these, less than 10% have established or had long‐term population persistence reported. Because seed reintroductions are relatively less expensive than plant reintroductions, determining ways to increase efficacy of using seeds to establish rare populations has conservation benefits. In laboratory trials, we examined seed germination of an endangered legume, Dalea carthagenensis var. floridana, endemic in South Florida, U.S.A. Laboratory treatments confirmed that seeds are hard seeded, remaining viable for 1,452 days even when moist; nicking, heat, and freezing triggered higher and more rapid germination than controls. Field trials begun in 2009, using pretreated (frozen) and untreated seeds within two habitats (natural and novel) revealed that freezing pretreatment increased germination in both habitats. However, plants matured, reproduced, and established seedlings only in natural habitat, not in novel habitat. By 2012, seed treatment plots in natural pine rockland had significantly greater numbers of reproductive plants and seedlings than controls. In a restoration context, using seed pretreatments to stimulate germination can improve establishment success in suitable habitats. When paired with essential vegetation management and a controlled burn, seed augmentation helped rescue the population from the brink of extinction.  相似文献   

3.
Griffith  Alan B.  Forseth  Irwin N. 《Plant Ecology》2003,167(1):117-125
Aeschynomene virginica is a rare annual plant found in freshwater tidal wetlands of the eastern United States. We hypothesized that standing vegetation and water inundation were two important environmental factors in its population dynamics. To test these hypotheses, we sowed seeds into plots with undisturbed vegetation or plots with all aboveground vegetation removed in 1998 and 1999. Presence/absence of seedlings was noted and seedling survival to reproduction, final size, and seed set were measured throughout both growing seasons. Seedling establishment from germination to the first true leaf stage increased with decreasing water depth. Vegetation removal plots had greater seedling establishment, higher seedling survival, and higher seed set per plant than non-removal plots. In a greenhouse study designed to test the effects of water level on seed germination and seedling establishment, no seedlings established in submerged soils, and seed germination and seedling establishment were lower in waterlogged soil than in wet soil. Physical stress associated with deeper water likely limits the distribution of A. virginica to higher elevations, where seeds that colonize patches with low vegetative cover are more likely to produce reproductive adults that produce more seeds relative to patches with established vegetation. A. virginica appears to be a fugitive species specializing on open habitat patches in tidal wetlands. This species may be dependent on disturbances for population establishment and maintenance.  相似文献   

4.
Genetic factors influence the populationviability of rare species, yet the fitnessconsequences of inbred and outbred progeny areseldom tested empirically in reintroductionstrategies designed for species recovery orhabitat restoration. Rare and endangeredplants of Silene (Caryophyllaceae) occuron four continents, including North America. In Oregon, inbred and outbred progeny weremonitored for three years after experimentalreintroduction of a narrow endemic, S.douglasii var. oraria, into formerlygrazed habitat within its presumed historicalrange. Survival and reproduction were comparedfor progeny that were derived from the seeds ofself- versus cross-pollinated flowersproduced in situ at Cascade Head, aUNESCO Biosphere Reserve where the largest ofthree extant populations occurs. Progeny ofcross-pollinated flowers had significantlygreater field survival in all years than didoffspring of selfed or open-pollinated flowers(P < 0.01). Outbred progeny alsosignificantly exceeded other treatment cohortsin canopy area, and produced more reproductivestems and flowers than other progeny types ofthe same maternity. For plots varying in plantdensity, mortality was greatest in thehigh-density competitive regime but thesurvivors reached significantly larger sizesand reproductive capacities than in low densityplots (P < 0.05). In all, successfulconservation plans involving reintroduction mayrequire genetically diverse progeny to offsetinbreeding depression as well as suitableplanting densities and source populations.  相似文献   

5.
毛红椿天然林种子雨、种子库与天然更新   总被引:3,自引:0,他引:3  
2008-2011年,调查江西九连山国家级自然保护区毛红椿天然林的种子雨、种子库及林下幼苗数量.结果表明:在毛红椿天然林,种子雨散布时间为10月下旬至12月下旬.2010年不同样地的种子雨强度为虾公塘气象观测站(320.3±23.5粒·m-2)>虾公塘保护站(284.7±24.2粒·m-2)>大丘田保护站(251.6±24.7粒·m-2),分别以222.0、34.3和22.6粒·m-2完好种子供土壤萌发更新;毛红椿种子储量取决于结实量、鸟类取食和种子活力等因素,鸟类取食是其种子储量大幅下降的首要因素;由于种子不耐储藏以及大量腐烂,种子有效贮藏期不足1个月.12月天然林种子库平均萌发数≤2株·m-2,次年1月土壤种子库种子量最少,为6.7~11.8粒·m-2,平均仅萌发0.4~0.6株·m-2,与林下实生幼苗分布极少相吻合.毛红椿种子雨储备、种子库种子活力保存及幼苗建成等因素影响其天然更新.  相似文献   

6.
以位于广西黄连山自然保护区的德保苏铁Cycas debaoensis回归种群为对象,从开花情况、传粉媒介、传粉昆虫数量、结实率、种子散播媒介和方式等方面,与德保苏铁模式产地的自然种群进行比较研究。结果表明,2016年回归种群与自然种群开花植株分别为149和49株,雄雌性比分别为3.96∶1和4.44∶1,开花植株占比分别为31.63%和19.52%,自然结实率分别为60.53%和86.53%。留存在雌株上的未脱落种子一年内的萌发率分别为53.13%和42.51%,一年内幼苗存活率分别为0和3.56%;因重力或外力(雨水、风和动物)搬运后散布的种子一年内的萌发率分别为42.51%和38.46%,一年内幼苗存活率分别为74.46%和88.26%。与自然种群一样,回归种群的有效传粉者为大蕈甲科甲虫,但传粉昆虫数量较少,每雌球花有23.5头甲虫。回归种群结实率低于自然种群,可能的原因是传粉昆虫数量相对较少。啮齿动物等外力对种子的散布能显著提高幼苗存活率并直接影响幼苗的定植与分布,对回归种群的补充与更新有重要影响。总体上,黄连山德保苏铁回归种群在自然界中已能顺利完成生长和繁殖进程,基本具备自我更新能力。  相似文献   

7.
How climate-change induced environmental stress may alter the effects of inbreeding in patchy populations of rare species is poorly understood. We investigated the fitness of progeny from experimental self- and cross-pollinations in eight populations of different size of Echium wildpretii, a rare endemic plant of the arid subalpine zone of the Canarian island of Tenerife. As control treatments we used open pollination and autonomous selfing. The seed set of open-pollinated flowers was 55% higher than that of autonomously selfed flowers, showing the importance of animal pollination for reproductive success. The seed set, seed mass and germination rate of seedlings of hand-selfed flowers was similar to that of hand-crossed flowers, indicating weak inbreeding depression (seed set –4.4%, seed mass –4.1%, germination –7.3%). Similarly, under normal watering there were no significant effects of inbreeding on seedling survival (–3.0%). However, under low watering of seedlings inbreeding depression was high (survival –50.2%). Seed set of open- and hand-outcrossed-pollinated flowers was higher in large than in small populations, possibly due to more frequent biparental inbreeding in the latter. However, later measures of progeny fitness were not significantly influenced by population size. We predict that increasing drought duration and frequency due to climate change and reductions of population sizes may increase inbreeding depression in this charismatic plant species and thus threaten its future survival in the longer term.  相似文献   

8.
Emilio M. Bruna 《Oecologia》2002,132(2):235-243
I present the results of a 2-year experiment comparing seed predation, seed germination, and seedling survivorship patterns of the Amazonian understory herb Heliconia acuminata in forest fragments and continuous forest. These empirical results were compared with natural patterns of recruitment in permanent 5,000 m2 demographic plots adjacent to experimental areas. The number of naturally occurring seedlings established in demographic plots was 1.5-6 times greater in continuous forest than it was in 1-ha or 10-ha fragments. This result mirrors the pattern of seedling establishment in experimental transects, in which seeds in fragments were 3-7 times less likely to become established than those in continuous forest. Predation of experimentally sown seeds was extremely low at all sites, and is therefore not responsible for the observed pattern. Instead, reductions in seedling abundance in forest fragments are probably due to lower levels of seed germination. Forest fragments have higher air and soil temperatures, lower relative humidity, and increased leaf-litter accumulation, all of which can alter the cues used to initiate germination. While the growth of seedlings was similar in forest fragments and continuous forest, seedling survivorship in fragments was highly variable. These results suggest that altered environmental conditions may exacerbate reductions in plant recruitment resulting from modified plant-animal interactions. Strategies aimed at reducing the intensity of abiotic edge effects should therefore be incorporated into plant conservation efforts.  相似文献   

9.
The aim of animal reintroductions has mainly been species recovery; only few reintroduction initiatives focus on ecosystem restoration. Therefore, reintroduction consequences on ecological interactions are seldom assessed. We used the interaction between a reintroduced population of agoutis (Dasyprocta leporina) and a vulnerable tropical endemic tree (Joannesia princeps) to examine reintroduction effects on seed dispersal and seedling establishment. To test the outcomes of this interaction, we tracked seeds of J. princeps in two adjacent forest areas with and without reintroduced agoutis. We also assessed if dispersal distances affected seedling survival. To determine seed fate and dispersal distance, we used spool-and-line tracking, together with camera traps to identify dispersers. Agoutis were the only species removing J. princeps seeds, thus dispersal only occurred where agoutis had been reintroduced; in the area without agoutis, all seeds remained intact on the soil, even one year after the experiment's beginning. At the reintroduction area, most seeds were preyed upon by agoutis but 7% remained dispersed and 2% germinated after ten months. Only seeds buried by agoutis were able to germinate. Most dispersed seeds were dispersed 15 m or farther and longer dispersal distances benefited J. princeps, since seedlings farther from a conspecific adult tree had greater survival probability. Agoutis were also seen burying seeds of two other plant species; these mammals have the potential to benefit dozens of large-seeded species in our study system. Agouti reintroduction thus exemplifies the value of trophic rewilding programs to re-establish ecological interactions and restore ecosystem functioning.  相似文献   

10.
《新西兰生态学杂志》2011,28(1):113-124
Nearly one quarter of New Zealand’s unique vascular plant flora is threatened, and weed invasion is implicated in the decline of more than half of these threatened species. However, there is little experimental evidence showing that invasive weeds have a direct impact on threatened native plants. This study experimentally tested the hypothesis that competition with invasive weeds threatens the rare outcrop plant Pachycladon cheesemanii (Brassicaceae). Pachycladon cheesemanii is a threatened South Island, New Zealand endemic with a distribution nearly confined to rock outcrops. It has disappeared from historical record sites throughout its range. The effects of weed competition and habitat on P. cheesemanii establishment, growth and survival were investigated by sowing seed into replicated plots subject to three treatments: weed removal, soil disturbed and unweeded control, in three habitat types: forested and open rock outcrops and open tussock grassland. The experiments were carried out at three locations: Mt Somers (Canterbury), Wye Creek and Diamond Lake (Otago). Within weedy rock outcrop habitat, weed removal significantly increased the rate of P. cheesemanii germination, and appeared to increase seedling growth rates, implying that weeds can negatively impact populations. Relative to rock outcrop habitat, P. cheesemanii germination was very low in adjacent open grassland habitat regardless of weeding treatment. Demographic monitoring of four natural populations of P. cheesemanii revealed that seed production is highly variable among populations and may be limited by browse and mechanical damage to inflorescences. Pachycladon cheesemanii does produce a persistent seed bank but most seed is found close to parent populations. Our results suggest that competition with invading weeds threatens current P. cheesemanii populations, that plant establishment can be enhanced by weed removal, and that considerable potential exists for artificially expanding populations by sowing seed into appropriate weed-free habitat.  相似文献   

11.
  • Self‐pollination by geitonogamy is likely in self‐compatible plants that simultaneously expose a large number of flowers to pollinators. However, progeny of these plants is often highly allogamous. Although mechanisms to increase cross‐pollination have been identified and studied, their relative importance has rarely been addressed simultaneously in plant populations.
  • We used Rosmarinus officinalis to explore factors that influence the probability of self‐fertilisation due to geitonogamy or that purge its consequences, focusing on their effects on seed germination and allogamy rate. We experimentally tested the effect of geitonogamy on the proportion of filled seeds and how it influences germination rate. During two field seasons, we studied how life history and flowering traits of individuals influence seed germination and allogamy rates of their progeny in wild populations at the extremes of the altitudinal range. The traits considered were plant size, population density, duration of the flowering season, number of open flowers, flowering synchrony among individuals within populations and proportion of male‐sterile flowers.
  • We found that most seeds obtained experimentally from self‐pollination were apparently healthy but empty, and that the proportion of filled seeds drove the differences in germination rate between self‐ and cross‐pollination experiments. Plants from wild populations consistently had low germination rate and high rate of allogamy, as determined with microsatellites. Germination rate related positively to the length of the flowering season, flowering synchrony and the ratio of male‐sterile flowers, whereas the rate of allogamous seedlings was positively related only to the ratio of male‐sterile flowers.
  • Rosemary plants purge most of the inbreeding caused by its pollination system by aborting the seeds. This study showed that the rates of seed germination and allogamy of the seedlings depend on a complex combination of factors that vary in space and time. Male sterility of flowers, length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross‐pollination, therefore increasing germination and allogamy rates. Flowering traits appear to be highly plastic and respond to local and seasonal conditions.
  相似文献   

12.
Many plant communities are recruitment limited, which may occur because there are either too few seeds to fill available microsites, too few available microsites, or both. In a recruitment-limited, Minnesota, USA old field, we tested among these alternatives in a three-phase study. In phase 1, we estimated the production of late-successional forb and C4 grass seeds. In phase 2, we experimentally modified field establishment conditions with rainfall amendment, adult plant thinning, litter reduction, and small mammal exclusion. We then measured recruitment. On average, of the nearly 2,600 seeds produced m?2, only 164 seeds m?2 were present and living after overwintering, as measured by field and greenhouse germination. Furthermore, on average, only 9 of those 164 seeds m?2 germinated in the field, even under the relaxed establishment conditions of our four experimental treatments. Although adults of C4 grasses dominate the field, surprisingly few C4 grass seedlings germinated. To understand why, in phase 3, we added seed of the three dominant C4 grasses into the same plots the following year. Their ability to recruit into control plots compared with treated plots was relatively lower than for the ambiently recruited forbs from phase 2, suggesting that the competitively dominant C4 grasses have greater difficulty establishing in the extant community. Of the seeds that did germinate in the field in phases 2 and 3, all four experimental treatments significantly improved at least one stage of establishment, with the rainfall amendment having the greatest overall effect across species. In total, our results suggest that seed limitation was exacerbated by microsite limitation via multiple mechanisms.  相似文献   

13.
In all plant populations, establishment is controlled by two factors: the supply of propagules and their access to ‘safe sites’ for growth. An infestation of invading pest plants results in a seed-production gradient, from the edge where seeds are limiting, to the center where seeds may be in excess. Do invaded sites become ‘saturated’ with seeds? How rapidly does this occur, and how does the process depend on the availability of safe sites? Are safe sites, and consequently invasion, promoted by disturbance? I quantified the response of seedling establishment to seed input and disturbance in Cytisus scoparius (Scotch broom), an exotic shrub invading glacial outwash prairie remnants in western Washington, USA. I used disturbance treatments to investigate the role of the thick cryptogamic layer in these prairies, disturbing cryptogams by scraping or by fire. The effect of fire was partitioned into two factors: burning of the background vegetation/substrate versus breaking C. scoparius seed dormancy, by adding seeds either before or after the burn. Seed treatments ranged from 20 to 1000 seeds per m2. Both seed number and surface treatment showed significant effects on seedling density, along with a significant interaction between the two factors. Disturbance did not promote C. scoparius establishment; undisturbed plots produced more seedlings than burned or scraped plots. Within the burned plots, fire scarification appeared to increase germination but this effect was not significant. For germinated seedlings, mortality through the dry season (June–August) was not significantly different among surface treatments, nor did survivorship depend on density, with the result that initial differences in germination among the treatments persisted. The message that the undisturbed cryptogam layer facilitates C. scoparius establishment suggests that ‘ecosystem management’ strategies promoting healthy, undisturbed sites will not always be effective against invasive pest species.  相似文献   

14.
The effects of neighboring vegetation and soil fertility on the establishment, survival and growth of tree species were studied in a subtropical old-field area in south Brazil. Seed damage, germination and seedling establishment of four tree species plus growth and survival of two transplanted tree species were monitored under factorial combinations of the following treatments: (1) pioneer vegetation (presence and absence); (2) soil fertility (addition of NPK and control). Facilitation was the main process affecting plant performance. The presence of pioneer vegetation significantly improved germination, establishment, growth and survival of most study species. Around 90% of sown seeds were damaged and the removal of pioneer vegetation significantly increased seed damage for all species studied, decreased germination in three out of four species, and decreased establishment in one species. Moreover a significantly higher seedling growth rate of Inga virescens was found after the first year of the experiment in plots where vegetation was present. The presence of vegetation significantly increased seedling survival of I. virescens by protecting seedlings from leaf loss due to winter frosts. Competition was detected by the second year when a higher growth of transplanted seedlings of the species Araucaria angustifolia occurred in plots where vegetation was present and fertilizer were applied. A lower growth rate was detected in plots where vegetation was present but fertilizer was not applied. These results indicate a balance between competition for soil nutrients and protection by neighbor vegetation. Damage of seedlings by leaf cutter ants was an important barrier for plant survival. Damage occurred in 80% of the A. angustifolia seedlings and 58% of these damaged seedlings died. The presence of neighboring vegetation tended to protect seedlings from ant damage. Although competition occurred, facilitation seems to be the main process driving early successional changes in this subtropical old field. This was mainly due to the improvement of local microclimatic conditions and protection against herbivores by neighboring vegetation. Facilitation occurred during establishment and growth phases in a subtropical area that is considered a productive, low stress environment. Our results indicate that facilitation may be more frequent in productive environments than previously thought.  相似文献   

15.
Abstract. The effects of different forms of land use on germination and establishment of the rare fen species Succisella inflexa were investigated in seed introduction experiments in a mown and an abandoned fen meadow in SE Germany. Treatments included abandonment, mowing in fall and mowing with creation of gaps in the moss and litter layer. Floating capacity of seeds was tested in order to estimate potential dispersal by water. On the mown meadow, gaps had a slightly positive effect on germination rates, while greatly increasing seedling survival until the next spring. At the abandoned site, litter inhibited germination, whereas mosses had a negative effect on germination and a positive effect on survival rates during the first year after germination. Both germination and seedling establishment were negatively affected by the presence of slug herbivores. On the abandoned site, no seedlings at all survived until the next spring. Even though seeds of Succisella inflexa were capable to float for several weeks and to germinate thereafter, the situation at the field sites indicates that longdistance dispersal is highly unlikely. Our results showed that not only direct effects of abandonment, such as accumulation of litter, may have led to poor germination and poor seedling establishment of the species. Additionally, indirect consequences of changes in land use, such as higher seedling herbivory by slugs and successional vegetation changes due to abandonment, were important in determining habitat quality and availability of microsites for seedling recruitment. Furthermore, early mowing imposed seed limitation on plant populations.  相似文献   

16.
Sand burial, persistent seed bank and soil water content (SWC) are three factors that potentially can affect regeneration in sand dune plant populations. To evaluate the effects of these three factors on population regeneration of Eremosparton songoricum, a rare and endangered legume, we investigated seed germination, seedling emergence and seedling survival in greenhouse and controlled field experiments in different sand dunes microsites. Freshly matured seeds are physically dormant, and the highest germination was only 9.3?±?5.8% at 25/10°C. Seed germination occurred at burial depths from 0 to 10 cm, but the maximum depth from which seedlings emerged was 6 cm; from 1 to 6 cm, the deeper the burial, the lower the percentage of seedling emergence. Only 36.2% of the total soil seed banks occurred at depths of 0?C6 cm. For artificially sown seeds at different dune microsites, mean seedling emergence percentage was 6.8%. Of 150 seedlings that emerged in the field investigation at the study site, only those germinating in flat sandy areas survived, and mean survival percentage was only 2.0%. Thus, the proportion of non-dormant seeds in soil seed banks that developed into seedlings and survived to the end of the growing season was only 0.2%. Minimum SWC for seed germination, seedling emergence and seedling survival was 2.0%. During monitoring of emergent seedlings in the field, low seedling recruitment was at least partly due to the rate of root extension (1.6?±?0.3 cm day?1) into the sandy soil, which was slower than that of the downward movement of plant-available moisture (2.8?±?0.6 cm day?1). Thus, population regeneration under natural conditions rarely occurred via sexual reproduction, owing to the limited water resources available for seedling establishment. Rational field seeding practices, including manually scarified or dry stored seeds before sowing, sowing the seeds at right time and suitable place, are suggested for ecological restoration of endangered E. songoricum populations.  相似文献   

17.
植物天然更新过程中种子和幼苗死亡的影响因素   总被引:46,自引:0,他引:46  
植物天然更新包括有种子搬运、种子库动态、种子萌发和幼苗定居等过程。从种子生产到幼苗定居的更新是植物生活史中最为敏感的阶段之一 ,多种因素的影响种子和幼苗的命运。其中包括 :( 1 )动物取食或病原体侵袭。种子在扩散和搬运过程中 ,易被小哺乳动物或无脊椎动物取食。蛀虫也可以使种子失去萌芽能力。病原体感染种子和幼苗 ,容易引起种子和幼苗的死亡。 ( 2 )异质生境的影响。在不同生境中 ,光照条件、土壤水分和化学成分等因子的组合严重影响种子和幼苗的命运。 ( 3 )干扰的影响。小尺度和大尺度的干扰都可以影响到植物更新时种子和幼苗的命运。林窗作为特殊的干扰体系 ,为不同种类植物提供了更新的机会。 ( 4 )繁殖体特征。种子大小、质量和保护色等特征影响种子和幼苗在更新过程中的生存。种子休眠期间 ,由于生理衰老和腐烂的原因使种子失去活力而不能萌发。 ( 5 )密度和距离制约。母株附近由于密度竞争的影响 ,种子和幼苗死亡率都较高。  相似文献   

18.
Breen AN  Richards JH 《Oecologia》2008,157(1):13-19
Plants with limited resources adjust partitioning among growth, survival, and reproduction. We tested the effects of water and nutrient amendments on seed production, size, and quality in Sarcobatus vermiculatus (greasewood) to assess the magnitude and importance of changes in reproductive partitioning. In addition, we assessed interactions among the environment of seed-producing plants (adult plant scale), seed size, and seedling microenvironment (seedling scale) on successful seedling establishment. Interactions of these factors determine the scale of resource heterogeneity that affects seedling establishment in deserts. Both total number of seeds produced per plant and seed quality (weight and germination) increased significantly in the enriched treatment in a 3-year field experiment. Seedling length 3 days after germination and seed N concentration, other measures of seed quality, were higher for seed from both irrigated and enriched plants than for seed from control plants. Field S. vermiculatus seed production and quality can be substantially increased with irrigation and nutrient enrichment at the adult plant scale and this allows management of seed availability for restoration. However, based on a greenhouse study, seedling environment, not the environment of the seed-producing plant or seed size, was the most important factor affecting seedling germination, survival, and growth. Thus it appears that production of more seed may be more important than improved seed quality, because higher quality seed did not compensate for a low-resource seedling environment. For both natural establishment and restoration this suggests that heterogeneity at the scale of seedling microsites, perhaps combined with fertilization of adult shrubs (or multi-plant patches), would produce the greatest benefit for establishing seedlings in the field.  相似文献   

19.
The genetic background of transplants used to create or augment wild populations may affect the long-term success of restored populations. If seed sources are from differently adapted populations, then the relative performance of progeny from crosses among populations may decrease with an increase in genetic differences of parents and in the differences of parental environments to the transplant location. We evaluated the potential for such outbreeding depression by hybridizing individuals from six different populations of Lotus scoparius var. scoparius and L. s. var. brevialatus. We used allozyme data to calculate genetic distances between source populations, and compiled climatic data and measured soil traits to estimate environmental distances between source populations. We found significant outbreeding depression following controlled crosses. In the greenhouse, the success of crosses (seeds/flower × seedlings/seed) decreased with increasing genetic distance between populations revealing genetically based outbreeding depression unrelated to local adaptation. After outplanting to one native site (in situ common garden), field cumulative fitness of progeny (survival × fruit production) decreased significantly with mean environmental distance of the parental populations to the transplant site, but not with genetic distance between the crossed populations. This result is consistent with a disruption of local adaptation. At the second, ecologically contrasting common garden, where low survival reduced statistical power, field cumulative fitness (survival × progeny height) did not decrease significantly with either environmental distance or genetic distance. Overall, intervariety crosses were 40 and 50% as fit (seeds/flower × seedlings/seed × survival × fruits at the first garden or × height at the second) as intravariety crosses. These results suggest that the cumulative outbreeding depression was caused by a combination of genetically based ecological differences among populations and other genomic coadaptation. We conclude that mixing genetically differentiated seed sources of Lotus scoparius may significantly lower the fitness of augmented or restored populations. Genetic and environmental similarities of source populations relative to the transplant site should be considered when choosing source materials, a practice recommended by recent seed transfer policies. Geographic separation was not a good surrogate for either of these measures.  相似文献   

20.
Reintroductions of rare plants require detailed knowledge of habitat requirements, species interactions,and restoration techniques. Thus, incremental experimentation over many years may be required to develop adequate knowledge and techniques for successful reintroduction. To determine drivers of extinction in historical reintroductions of a federally endangered perennial(Astragalus bibullatus), we developed a reintroduction experiment to disentangle the relative importance of habitat quality, herbivores, and restoration technique on reintroduction success. In a factorial design, we manipulated access to vertebrate herbivores across different habitat types(mesic ecotone vs. xeric barren), and used founder populations comprised of more transplants and genetic sources than previous reintroduction attempts.In mesic ecotones where historical reintroductions failed, excluding herbivores, thinning woody encroachment to improve habitat quality, outplanting across a greater array of microhabitats, and increasing founder population size did not improve demographic rates over previous attempts.Compared to mesic ecotones, transplant survival rates and cumulative fruit production were more than two and ten times greater, respectively, in a xeric barren ecotone characterized by open, grassy, and dry microenvironmental conditions. Across all sites, herbivores decreased probabilities of survival and flowering of larger adult plants. Flowering rates were 80% greater inside relative to outside herbivore exclusion cages. Over a four-year period, only a single uncaged plant produced fruit. Our study demonstrates that habitat quality and vertebrate herbivory are key drivers of long-term persistence in rare plant reintroductions. Using incremental experiments that build on previous knowledge gained from long-term monitoring can improve reintroduction outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号