首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The broad distribution of the Sceloporus magister species group (squamata: phrynosomatidae) throughout western North America provides an appropriate model for testing biogeographical hypotheses explaining the timing and origins of diversity across mainland deserts and the Baja California Peninsula. We inferred concordant phylogenetic trees describing the higher-level relationships within the magister group using 1.6 kb of mitochondrial DNA (mtDNA) and 1.7 kb of nuclear DNA data. These data provide strong support for the parallel divergence of lineages endemic to the Baja California Peninsula (S. zosteromus and the orcutti complex) in the form of two sequential divergence events at the base of the magister group phylogeny. A relaxed phylogenetic analysis of the mtDNA data using one fossil and one biogeographical constraint provides a chronology of these divergence events and evidence that further diversification within the Baja California clades occurred simultaneously, although patterns of geographical variation and speciation between clades differ. We resolved four major phylogeographical clades within S. magister that (i) provide a novel phylogenetic placement of the Chihuahuan Desert populations sister to the Mojave Desert; (ii) illustrate a mixed history for the Colorado Plateau that includes Mojave and Sonoran Desert components; and (iii) identify an area of overlap between the Mojave and Sonoran Desert clades near Yuma, Arizona. Estimates of bidirectional migration rates among populations of S. magister using four nuclear loci support strong asymmetries in gene flow among the major mtDNA clades. Based on the nonexclusivity of mtDNA haplotypes, nuclear gene flow among populations and wide zones of phenotypic intergradation, S. magister appears to represent a single geographically variable and widespread species.  相似文献   

2.
We examined intra-specific phylogenetic relationships in leatherside chub, Gila copei. The complete mitochondrial (mt) cytochrome b gene (1140 bp) was sequenced for 30 individuals from 10 populations that span the geographical distribution of this species. Traditional phylogenetic analyses revealed two deeply divergent and evolutionarily distinct mtDNA clades that are geographically separated in northern and southern drainage basins. Interpopulation sequence variation between clades ranged from 7.7 to 8.1%. The northern clade was genetically more similar and phylogenetically more closely related to the selected out-group Lepidomeda m. mollispinus than to the southern clade, suggesting that the taxonomy of this species may require revision. Sequence variation among populations within clades ranged from 0 to 0.3% in the north and from 0 to 0.7% in the south. Statistical parsimony was used to construct phylogenetic networks of haplotypes within clades. Nested clade analysis revealed that geographical fragmentation has played an important role in genetic structuring within northern and southern clades.  相似文献   

3.
S.Y. Chen    R.D. Zhang    J.G. Feng    H. Xiao    W.X. Li    R.G. Zan    Y.P. Zhang 《Journal of fish biology》2009,74(8):1774-1786
Phylogeographical analyses on Sinocyclocheilus grahami samples from seven localities within the Lake Dianchi Basin in China were conducted to explore the main factors shaping population structure within this species. Phylogenetic and network analyses revealed two major clades in 24 mtDNA haplotypes. One clade included three haplotypes exclusively from samples of the lower basin and another clade encompassed other haplotypes from samples of the upper basin. The estimated divergence time between the two clades predated the river capture event connecting the lower and upper lake basin and thus supported geographical isolation as the main factor shaping genetic divergence between these two clades. Furthermore, analysis of molecular variance and pair-wise ΦST distances revealed significant genetic differentiation within the upper basin. Mantel tests clearly supported patterns of differentiation arose purely as a result of isolation by distance. These results further highlight the importance of geographical isolation in shaping differentiation within this species.  相似文献   

4.
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.  相似文献   

5.
The South Island of New Zealand offers unique opportunities to study insect evolution due to long-term physical isolation, recent alpine habitats and high levels of biotic endemism. Using DNA sequence data from cytochrome oxidase subunit 1, we investigated the phylogeographical pattern among 10 endemic cockroach species within the genus Celatoblatta Johns (Blattidae). We tested the hypothesis that an ancestral cockroach species underwent rapid speciation in response to major climatic differentiation induced by mountain building. Results suggest that speciation was a twofold process, with an interspecific radiation of Pliocene/Pleistocene age followed by intraspecific diversification during the mid Pleistocene. Average genetic distance (maximum likelihood GTR + I + Gamma) was 9.17%, with a maximum of 14.5%. Data revealed eight deep well-supported branches, each with terminal clades. Six clades were differentiated according to morphological species, while the seventh was composed of three sympatric species. We consider the latter to be a phylogenetic species, possibly as a result of hybridization within a defined geographical area. This finding seriously challenges species distinctions for these three cockroach species. Correlation between genetic distances and a Climate Similarity Index (CSI) was negative, suggesting that species found in similar habitats are also genetically closely related. A Mantel test on within-clade genetic distances vs. linear geographical distance was positive, suggesting allopatric isolation for those haplotypes. We present a model of speciation for South Island Celatoblatta.  相似文献   

6.
The phylogeographic structure of the monotypic endemic southern African angulate tortoise Chersina angulata was investigated throughout its distribution with the use of partial sequences from three mtDNA loci (COI, cyt b and ND4). Phylogeographic and phylogenetic structuring obtained for the three mtDNA markers were highly congruent and suggested the presence of two genetically distinct, reciprocally monophyletic evolutionary lineages. Group one contained two subclades with haplotypes from the north-western Cape and south-western Cape, respectively, while haplotypes from the southern Cape comprised group two. The two major clades were separated by nine and eight mutational steps for COI and ND4, respectively. Of the three mtDNA gene regions examined, the ND4 partial sequence contained the most phylogenetic signal. Haplotype diversity was generally low and we recovered 34 haplotypes for the 125 animals sequenced for the ND4 subunit. Nested clade analyses performed on the variable ND4 partial sequences suggested the presence of two major refugial areas for this species. The demographic history of the taxon was characterised by range expansion and prolonged historical fragmentation. Divergence time estimates suggest that the temporal and spatial distribution of the taxon was sculpted by changes in temperature and rainfall patterns since the late Miocene. Corroborative evidence from other reptiles is also suggestive of a late Miocene divergence, indicating that this was a major epoch for cladogenesis in southern Africa. Apart from the genetic differences between the two major clades, we also note morphometric and behavioural differences, alluding to the presence of two putative taxa nested within C. angulata.  相似文献   

7.
Placozoa has been a key phylum for understanding early metazoan evolution. Yet this phylum is officially monotypic and with respect to its general biology and ecology has remained widely unknown. Worldwide sampling and sequencing of the mitochondrial large ribosomal subunit (16S) reveals a cosmopolitan distribution in tropical and subtropical waters of genetically different clades. We sampled a total of 39 tropical and subtropical locations worldwide and found 23 positive sites for placozoans. The number of genetically characterized sites was thereby increased from 15 to 37. The new sampling identified the first genotypes from two new oceanographic regions, the Eastern Atlantic and the Indian Ocean. We found seven out of 11 previously known haplotypes as well as five new haplotypes. One haplotype resembles a new genetic clade, increasing the number of clades from six to seven. Some of these clades seem to be cosmopolitan whereas others appear to be endemic. The phylogeography also shows that different clades occupy different ecological niches and identifies several euryoecious haplotypes with a cosmopolitic distribution as well as some stenoecious haplotypes with an endemic distribution. Haplotypes of different clades differ substantially in their phylogeographic distribution according to latitude. The genetic data also suggest deep phylogenetic branching patterns between clades.  相似文献   

8.
The giant spiny frog(Quasipaa spinosa) is an endangered species with a relatively small distribution limited to southern China and Northern Vietnam. This species is becoming increasingly threatened because of over-exploitation and habitat degradation. This study provides data on the genetic diversity and population genetic structure of the giant spiny frog to facilitate the further development of effective conservation recommendations for this economically important but threatened species. We examined 10 species-specific microsatellite loci and Cyt b genes(562 bp) collected from 13 wild populations across the entire range of this species. Results of 10 microsatellite loci analysis showed a generally high level of genetic diversity. Moreover, the genetic differentiation among all 12 populations was moderate to large(overall F_(ST) = 0.1057). A total of 51 haplotypes were identified for Cyt b, which suggests high haplotype nucleotide diversities. Phylogeographic and population structure analyses using both DNA markers suggested that the wild giant spiny frog can be divided into four distinct major clades, i.e., Northern Vietnam, Western China, Central China, and Eastern China. The clades with significant genetic divergence are reproductively isolated, as evidenced by a high number of private alleles and strong incidence of failed amplification in microsatellite loci. Our research, coupled with other studies, suggests that Q. spinosa might be a species complex within which no detectable morphological variation has been revealed. The four phylogenetic clades and some subclades with distinct geographical distribution should be regarded as independent management units for conservation purposes.  相似文献   

9.
Hybridization via distributional changes should be an important factor for plant speciation. Previous cpDNA analyses of the Aristolochia kaempferi group, comprising six taxa in East Asia, showed a distinct phylogeographic structure resulting from distributional changes brought about by paleoclimatic oscillations. However, the cpDNA phylogeny was incongruent with morphologically defined taxa. To explore the evolutionary processes responsible for the inconsistency between cpDNA and morphology, we made artificial crosses and performed phylogenetic analyses using multiple nuclear markers. All crosses among different taxa or cpDNA clades set fruit, if crossing direction is not considered. The five nuclear phylogenies mostly did not support either the taxa or the cpDNA clades. A combined analysis of cpDNA and the PI exon revealed the two major lineages in the group, lacking a prezygotic isolating barrier between them. However, an asymmetric prezygotic isolating barrier occurs between populations of the Japanese main islands and of other areas that belong to different cpDNA subclades. It seems reasonable to conclude that the development of a prezygotic isolating mechanism is not necessarily proportional to the degree of genetic divergence. These results suggested that species boundaries within the group are blurred due to speciational processes associated with multiple hybridization and introgression resulting from repeated contacts among differentiated populations.  相似文献   

10.
The yabby, Cherax destructor Clark, is the most widespread species in the most widespread genus of Australian freshwater crayfish. It has a distribution that spans several distinct drainage basins and biogeographical regions within semiarid and arid inland Australia. Here we report a study designed to investigate patterns of genetic variation within the species and hypotheses put forward to account for its extensive distribution using DNA sequences from the mitochondrial 16S rRNA gene region. Results of phylogenetic analyses contradicted previous allozyme data and revealed relatively deep phylogenetic structure in the form of three geographically correlated clades. The degree of genetic divergences between clades (8–15 bp) contrasted with the relatively limited haplotype diversity within clades (1–3 bp). Network-based analyses confirmed these results and revealed genetic structure on both larger and more restricted geographical scales. Nevertheless some haplotypes and 1-step clades had large distributions, some of which crossed boundaries between river basins and aquatic biogeographical regions. Thus both older and more recent historical processes, including fragmentation on a larger geographical scale and more recent range expansion on a local scale, appear to be responsible for the observed pattern of genetic variation within C. destructor . These results support elements of alternative hypotheses previously put forward to account for the evolutionary history of C. destructor and the origin of its large distribution.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 539–550.  相似文献   

11.
The white-spotted charr (Salvelinus leucomaenis) is a coldwater-adapted fish distributed in far-eastern Asia. To assess phylogeographic patterns of this species over most of its range in the Japanese archipelago and Sakhalin Island, Russia, we examined nucleotide sequences of the mitochondrial DNA (mtDNA) cytochrome b region (557 bp) in 141 individuals from 50 populations. A total of 33 (5.5%) nucleotide positions were polymorphic and defined 29 haplotypes. Phylogenetic analysis assigned the observed haplotypes to four main clades, which were characterized by the idiosyncrasies and discontinuity of geographic distributions. The nested clade analyses revealed that the geographical distribution patterns of some haplotypes and clades were explained by historical event such as past fragmentation. Although substantial genetic differentiation was found among the four main clades, their geographic distributions overlapped extensively in several regions. Since white-spotted charr can potentially use both freshwater and marine environments, coexistence among different lineages can be attributed to secondary contact through range expansion by migratory individuals during multiple glacial periods after interglacial isolation. Finally, our data demonstrate that the current subspecies designation does not reflect the phylogeography of this species based on mtDNA analysis. Hierarchical analysis (AMOVA) also showed that genetic variation was far more pronounced within subspecies than among subspecies (i.e., among discrete regions). These results suggest that each population, rather than each subspecies, must be treated as an evolutionarily significant unit.  相似文献   

12.
Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.  相似文献   

13.
14.
We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.  相似文献   

15.
A phylogenetic analysis of Taiwanese fanged dicroglossine frog, Limnonectes fujianensis (Anura, Ranidae), was conducted to examine its genetic diversification using sequence data from a portion of the mitochondrial DNA (mtDNA) cytochrome b sequences. We collected genetic data from 200 individuals at 23 localities in Taiwan and three localities in China. A neighbor-joining tree of 39 haplotypes revealed two clades in Taiwan and a clade in China, each showing restricted geographical distribution. The pattern of geographical divergence suggests a single invasion into Taiwan. Divergence times between clades were inferred using molecular clock tests. The population relationship of L. fujianensis between Taiwan and mainland China, and the phylogenetic relationships with its congeners, e.g., L. bannaensis, L. fragilis and L. kuhlii, were obtained and discussed.  相似文献   

16.
The major aim of this study was to compare the phylogeographic patterns of codistributed bats and small nonvolant Neotropical mammals. Cytochrome b sequences (mitochondrial DNA) were obtained for a total of 275 bats representing 17 species. The tissue samples were collected in coastal Brazil, and were available from Mexico and the Guyana. The study concentrates on four species (Artibeus lituratus, Carollia perspicillata, Sturnira lilium and Glossophaga soricina) which were well represented. The other 13 species were sequenced to test the generality of the patterns observed. In general, sequence divergence values within species were low, with most bat species presenting less than 4% average sequence divergence, and usually between 1 and 2.5%. Clades of highly similar haplotypes enjoyed broad distribution on a continental scale. These clades were not usually geographically structured, and at a given locality the number of haplotypes was high (8-10). As distance increased, some moderately divergent clades were found, although the levels of divergence were low. This suggests a geographical effect that varied depending on species and scale. Small nonvolant mammals almost invariably have high levels of sequence divergence (> 10%) for cytochrome b over much shorter distances (< 1000 km). The grain of intraspecific variation found in small nonvolant mammals is much finer than in bats. Low levels of geographical structuring cannot be attributed to a slower evolutionary rate of bat DNA in relation to other mammalian taxa. The phylogeographic pattern of bats contrasts sharply with the pattern found for Neotropical rodents and marsupials.  相似文献   

17.
Subgenus Grammica, the largest and most diverse group in the parasitic genus Cuscuta, includes 130 species distributed primarily throughout the New World, with Mexico as its center of diversity. To circumscribe the subgenus and assess the relationships among its major lineages, we conducted the first phylogenetic study of Grammica using plastid trnL-F and nrITS sequences from a wide taxonomic sampling covering its morphological, physiological, and geographical diversity. With the exception of one species belonging elsewhere, the subgenus was found to be monophyletic. The results further indicate the presence of 15 well-supported major clades within Grammica. Some of those lineages correspond partially to earlier taxonomic treatments, but the majority of groups are identified in this study for the first time. The backbone relationships among major clades, however, remain weakly supported or unresolved in some cases. The phylogenetic results indicate that the fruit dehiscence character is homoplastic, thus compromising its value as a major taxonomic and evolutionary feature. While several striking cases of long-distance dispersal are inferred, vicariance emerges as the most dominant biogeographical pattern for Cuscuta. Species placed within one of the clades with a predominantly South American distribution are hypothesized to have substantially altered plastid genomes.  相似文献   

18.
Until recently, Histoplasma capsulatum was believed to harbour three varieties, var. capsulatum (chiefly a New World human pathogen), var. duboisii (an African human pathogen) and var. farciminosum (an Old World horse pathogen), which varied in clinical manifestations and geographical distribution. We analysed the phylogenetic relationships of 137 individuals representing the three varieties from six continents using DNA sequence variation in four independent protein‐coding genes. At least eight clades were idengified: (i) North American class 1 clade; (ii) North American class 2 clade; (iii) Latin American group A clade; (iv) Latin American group B clade; (v) Australian clade; (vi) Netherlands (Indonesian?) clade; (vii) Eurasian clade and (viii) African clade. Seven of eight clades represented genetically isolated groups that may be recognized as phylogenetic species. The sole exception was the Eurasian clade which originated from within the Latin American group A clade. The phylogenetic relationships among the clades made a star phylogeny. Histoplasma capsulatum var. capsulatum individuals were found in all eight clades. The African clade included all of the H. capsulatum var. duboisii individuals as well as individuals of the other two varieties. The 13 individuals of var. farciminosum were distributed among three phylogenetic species. These findings suggest that the three varieties of Histoplasma are phylogenetically meaningless. Instead we have to recognize the existence of genetically distinct geographical populations or phylogenetic species. Combining DNA substitution rates of protein‐coding genes with the phylogeny suggests that the radiation of Histoplasma started between 3 and 13 million years ago in Latin America.  相似文献   

19.
The newts Triturus vulgaris and Triturus montandoni are sister species that exhibit contrasting levels of intraspecific morphological variation. Triturus vulgaris has a broad Eurasiatic distribution encompassing both formerly glaciated and unglaciated areas and shows substantial morphological differentiation in the southern part of its range, while T. montandoni, confined to the Carpathians, is morphologically uniform. We analysed sequence variation of two mtDNA fragments of the total length of c. 1850 bp in 285 individuals of both species collected from 103 localities. Phylogenetic analysis of 200 unique haplotypes defined 12 major clades, their age estimated at c. 4.5-1.0 million years (Myr). Most of the older clades were found in the southern part of the range, and also in central Europe, mainly in Romania. The distribution of mtDNA clades points to the existence of several glacial refugia, located in the Caucasus region, Anatolia, the Balkan Peninsula, Italy, and more to the north in central Europe. The concordance between mtDNA based phylogeny and the distribution of T. vulgaris subspecies was weak. Triturus montandoni haplotypes did not form a monophyletic group. Instead they were found in six clades, in five of them mixed with T. vulgaris haplotypes, most likely as a result of past or ongoing hybridization and multiple introgression of mtDNA from T. vulgaris to T. montandoni. Patterns of sequence variation within clades suggested long-term demographic stability in the southern groups, moderate and relatively old demographic growth in the populations inhabiting central Europe, and high growth in some of the groups that colonized northern parts of Europe after the last glacial maximum.  相似文献   

20.
The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 x 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号