首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significantly different maternal line responses to inbreeding provide a mechanism for the invasion of a selfing variant into a population. The goal of this study was to examine the extent of family-level variation in inbreeding depression in the mixed-mating, perennial herb Scabiosa columbaria. Plants from one population were raised, and hand-pollinated to produce selfed and outcrossed progeny, and the effects of inbreeding depression on life-cycle traits were analyzed. Inbreeding depression significantly affected early life cycle traits. The pollination treatment by family interaction was significant for almost all traits, indicating a high family-level variation in inbreeding depression. The correlations between inbreeding depression values (e.g., percentage germination and flowering date, and flowering date and aboveground biomass) exhibited alternate signs, illustrating the type of association between inbreeding depression loci for different traits across the life cycle. Overall, it is concluded that the extent of among-family variation in inbreeding depression might allow a selfing variant of S. columbaria to invade an outcrossing population, though the pattern of correlations between inbreeding depression values might prevent effective purging of the deleterious genetic load.  相似文献   

2.
Quantifying the impacts of inbreeding and genetic drift on fitness traits in fragmented populations is becoming a major goal in conservation biology. Such impacts occur at different levels and involve different sets of loci. Genetic drift randomly fixes slightly deleterious alleles leading to different fixation load among populations. By contrast, inbreeding depression arises from highly deleterious alleles in segregation within a population and creates variation among individuals. A popular approach is to measure correlations between molecular variation and phenotypic performances. This approach has been mainly used at the individual level to detect inbreeding depression within populations and sometimes at the population level but without consideration about the genetic processes measured. For the first time, we used in this study a molecular approach considering both the interpopulation and intrapopulation level to discriminate the relative importance of inbreeding depression vs. fixation load in isolated and non-fragmented populations of European tree frog (Hyla arborea), complemented with interpopulational crosses. We demonstrated that the positive correlations observed between genetic heterozygosity and larval performances on merged data were mainly caused by co-variations in genetic diversity and fixation load among populations rather than by inbreeding depression and segregating deleterious alleles within populations. Such a method is highly relevant in a conservation perspective because, depending on how populations lose fitness (inbreeding vs. fixation load), specific management actions may be designed to improve the persistence of populations.  相似文献   

3.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

4.
The deleterious effects of inbreeding can be substantial in wild populations and mechanisms to avoid such matings have evolved in many organisms. In situations where social mate choice is restricted, extrapair paternity may be a strategy used by females to avoid inbreeding and increase offspring heterozygosity. In the cooperatively breeding Seychelles warbler, Acrocephalus sechellensis, neither social nor extrapair mate choice was used to avoid inbreeding facultatively, and close inbreeding occurred in approximately 5% of matings. However, a higher frequency of extra-group paternity may be selected for in female subordinates because this did reduce the frequency of mating between close relatives. Inbreeding resulted in reduced individual heterozygosity, which, against expectation, had an almost significant (P = 0.052), positive effect on survival. Conversely, low heterozygosity in the genetic mother was linked to reduced offspring survival, and the magnitude of this intergenerational inbreeding depression effect was environment-dependent. Because we controlled for genetic effects and most environmental effects (through the experimental cross-fostering of nestlings), we conclude that the reduced survival was a result of maternal effects. Our results show that inbreeding can have complicated effects even within a genetic bottlenecked population where the "purging" of recessive alleles is expected to reduce the effects of inbreeding depression.  相似文献   

5.
We examined the relations between fitness-related traits of wild harbour seal (Phoca vitulina) pups with microsatellite heterozygosity, and with a measure of genomic diversity based on the mean squared distance between microsatellite alleles within an individual, mean d2. Birth weight was positively influenced by maternal age, pup sex, and either mean d2 or individual heterozygosity in separate multiple regression models. The association of birth weight with mean d2 was stronger than that with heterozygosity, however. The factors maternal age, pup sex, and mean d2 combined to account for 36.8% of the variation in birth weight, with mean d2 accounting for the greatest explanatory power (52.3% of the variance explained). Pups which survived until weaning had significantly higher mean d2 than pups which died, independent of birth weight. These effects are consistent with heterosis resulting from recent population mixing, and/or inbreeding depression in this population. Mean d2 thus provides (i) a better measure of individual genetic variability than heterozygosity for microsatellite data; and (ii) a convenient tool for assessing the effects of inbreeding and outbreeding in natural populations.  相似文献   

6.
Individual variation in the magnitude of inbreeding depression (ID) in plants and its association with phenotypic traits may have important consequences for mating system evolution. This association has been investigated only scarcely, and always considering traits functionally related to autogamy. Here, we explore the association between individual variation in ID and plant traits associated with pollinator attractiveness (related to plant size, corolla size and corolla shape) in two populations of Erysimum mediohispanicum (Brassicaceae). ID was calculated along the entire life cycle of the plants. In addition, we also explored the relationship between phenotypic traits and the individual levels of heterozygosity. We found significant associations between ID and corolla diameter and stalk height, being taller plants with larger corollas those undergoing a lower intensity of ID. Furthermore, we found a negative relationship between corolla diameter and heterozygosity, suggesting that plants with large flowers have purged their genetic load. Finally, we found a significant effect of corolla diameter on the intrapopulation genetic structure. All these findings suggest that plants with large flowers have secularly suffered frequent inbreeding in the study populations. Because corolla diameter is a trait frequently selected by pollinators in E. mediohispanicum, we believe that the observed relationship between this trait and ID could be mediated by pollinators, probably throughout an increasing in biparental inbreeding, geitonogamy or autogamy.  相似文献   

7.
N S H Tien  M W Sabelis  M Egas 《Heredity》2015,114(3):327-332
Compared with diploid species, haplodiploids suffer less inbreeding depression because male haploidy imposes purifying selection on recessive deleterious alleles. However, alleles of genes only expressed in the diploid females are protected in heterozygous individuals. This leads to the prediction that haplodiploids suffer more from inbreeding effects on life-history traits controlled by genes with female-limited expression. To test this, we used a wild population of the haplodiploid mite Tetranychus urticae. First, negative effects of inbreeding were investigated by comparing maturation rate, juvenile survival, oviposition rate and longevity between lines created by three generations of either outbreeding or mother–son inbreeding. Second, purging through inbreeding was investigated by comparing the intensity of inbreeding depression between outbred families with known inbreeding/outbreeding mating histories. Negative effects of inbreeding and evidence for purging were found for the female trait oviposition rate, but not for juvenile survival and longevity. Both male and female maturation rate were negatively affected by inbreeding, most likely due to maternal effects because inbred offspring of outbred mothers was not affected. These results support the hypothesis that, in haplodiploids inbreeding effects and genetic variation due to deleterious recessive alleles may depend on gender.  相似文献   

8.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

9.
The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis.  相似文献   

10.
Although inbreeding can reduce individual fitness and contribute to population extinction, gene flow between inbred but unrelated populations may overcome these effects. Among extant Mexican wolves (Canis lupus baileyi), inbreeding had reduced genetic diversity and potentially lowered fitness, and as a result, three unrelated captive wolf lineages were merged beginning in 1995. We examined the effect of inbreeding and the merging of the founding lineages on three fitness traits in the captive population and on litter size in the reintroduced population. We found little evidence of inbreeding depression among captive wolves of the founding lineages, but large fitness increases, genetic rescue, for all traits examined among F1 offspring of the founding lineages. In addition, we observed strong inbreeding depression among wolves descended from F1 wolves. These results suggest a high load of deleterious alleles in the McBride lineage, the largest of the founding lineages. In the wild, reintroduced population, there were large fitness differences between McBride wolves and wolves with ancestry from two or more lineages, again indicating a genetic rescue. The low litter and pack sizes observed in the wild population are consistent with this genetic load, but it appears that there is still potential to establish vigorous wild populations.  相似文献   

11.
Microsatellite diversity predicts recruitment of sibling great reed warblers.   总被引:15,自引:0,他引:15  
Inbreeding increases the level of homozygosity, which in turn might depress fitness. In addition, individuals having the same inbreeding coefficient (e.g. siblings) vary in homozygosity. The potential fitness effects of variation in homozygosity that is unrelated to the inbreeding coefficient have seldom been examined. Here, we present evidence from wild birds that genetic variation at five microsatellite loci predicts the recruitment success of siblings. Dyads of full-sibling great reed warblers (Acrocephalus arundinaceus), one individual of which became a recruit to the natal population while the other did not return, were selected for the analysis. Each dyad was matched for sex and size. Local recruitment is strongly tied to fitness in great reed warblers as the majority of offspring die before adulthood, philopatry predominates among surviving individuals and emigrants have lower lifetime fitness. Paired tests showed that recruited individuals had higher individual heterozygosity and higher genetic diversity, which was measured as the mean squared distance between microsatellite alleles (mean d(2)), than their non-recruited siblings. These relationships suggest that the microsatellite markers, which are generally assumed to be neutral, cosegregated with genes exhibiting genetic variation for fitness.  相似文献   

12.
Many endangered species have small population sizes, with less than 10 remaining individuals in some extreme situations. Although the consequences of a small population size have received considerable research attention, few studies have examined the fate of extremely rare plants. Ostrya rehderiana is one such species, with only 5 naturally-regenerated surviving individuals and less than 150 artificially-regenerated progeny. Using amplified fragment length polymorphisms (AFLPs), we found that there was a low percentage of polymorphic loci but moderate heterozygosity in the 5 wild individuals. A severe decline in genetic diversity was observed in the progeny, with a decrease of 36.7% in heterozygosity and of 12% in the number of markers that were amplified per individual compared with the parental generation, a result which was caused by genetic drift and inbreeding. The effective population size was estimated to be 1. A significant positive relationship between parental genetic dissimilarity and the number of surviving offspring was observed, which indicated that inbreeding depression might have purged more inbred offspring. Implications for protection and recovery of the genetic variation of extremely rare plants, such as O. rehderiana, are proposed.  相似文献   

13.
Inbreeding depression (i.e. negative fitness effects of inbreeding) is central in evolutionary biology, affecting numerous aspects of population dynamics and demography, such as the evolution of mating systems, dispersal behaviour and the genetics of quantitative traits. Inbreeding depression is commonly observed in animals and plants. Here, we demonstrate that, in addition to genetic processes, epigenetic processes may play an important role in causing inbreeding effects. We compared epigenetic markers of outbred and inbred offspring of the perennial plant Scabiosa columbaria and found that inbreeding increases DNA methylation. Moreover, we found that inbreeding depression disappears when epigenetic variation is modified by treatment with a demethylation agent, linking inbreeding depression firmly to epigenetic variation. Our results suggest an as yet unknown mechanism for inbreeding effects and demonstrate the importance of evaluating the role of epigenetic processes in inbreeding depression.  相似文献   

14.
Inbreeding, the mating of close relatives, is known to have deleterious effects on fitness traits in organisms. Developmental stability (DS) and canalization may represent two processes that allow an organism to maintain a stable development that will produce the fittest phenotype. Inbreeding is thus expected to affect either DS or canalization. We tested if inbreeding affects DS and canalization using an inbreeding experiment on the cricket Gryllus firmus. We compared mean length, fluctuating asymmetry (as an index of DS), and morphological variation (as an index of canalization) of four limb traits between seven highly inbred lines, their F1 crosses, and outbred lines originated from the same stock population and maintained in the same environmental conditions. We show evidence for moderate inbreeding depression on the four measures of leg length. The nonsystematic difference in fluctuating asymmetry indices between breed types indicates that inbreeding or heterozygosity did not affect DS, or that fluctuating asymmetry is not a reliable index of DS. In contrast, inbreeding appears to affect canalization, as shown by the significantly higher variation in inbred lines compared to other lines. Identical low variation values in the crossbred and outbred lines indicate that heterozygosity could affect canalization. High variation in morphological variation and fluctuating asymmetry within crossbred or inbred lines, however, suggest the effect of recessive deleterious alleles on both canalization and DS. Although the strong correlation in morphological variation among traits suggests that identical genetic mechanisms govern canalization for all the limb traits, the absence of significant correlation in fluctuating asymmetry among traits causes us to reject this hypothesis for DS. For most of the traits, morphological variation and fluctuating asymmetry were not significantly correlated, which support the hypothesis that canalization and DS consist in two distinct mechanisms.  相似文献   

15.
The hypothesis that effective population sizes are low in hatchery-reared catla ( Catla catla ) from Bangladesh, possibly leading to inbreeding and loss of variation, was tested. The study was based on analysis of seven microsatellite loci in three samples of hatchery-reared catla and four samples representing wild populations. Pair-wise estimates of genetic differentiation between samples were low between wild samples (θ ranging from 0·012 to 0·034), but high between hatchery samples (θ ranging from 0·153 to 0·185), suggesting strong genetic drift in hatcheries. Genetic variation, both in terms of expected heterozygosity and allelic richness, was significantly lower in hatchery samples than in samples of wild catla. Application of a method for reconstructing families among offspring without parental genetic data showed that the hatchery samples consisted of very few half- and full-sib families, whereas the wild samples consisted of a high number of families, suggesting that most individuals were unrelated. Finally, estimation of the effective number of parents ( N b) in the largest sample of hatchery fish confirmed that effective population size was low ( N b= 14·9 for multiallelic loci and N b= 10·6 if alleles were pooled into two composite alleles). The results show that low effective population sizes leading to loss of variation and possibly inbreeding depression should be a matter of serious concern in aquaculture production of catla.  相似文献   

16.
We examined the effect of inbreeding on fitness (through both male and female functions) and changes in self-fertility in the partially self-incompatible species Campanula rapunculoides. Individuals in natural populations of C. rapunculoides varied extensively in their strength of self-incompatibility (SI). We crossed 11 individuals that differed in their strength of SI to generate families with four levels of inbreeding (f = 0.0, 0.25, 0.5, and 0.75). Progeny were scored for three traits related to male fitness and for outcrossed and selfed seed production. Analyses of variance revealed significant inbreeding depression for the three male traits and seed set. Families with strong or weak SI differed in their response to inbreeding. Families with weak SI had lower levels of inbreeding depression for most traits than families with strong SI, but strong SI families had a greater increase in selfed seed set, but not self-fertility, with inbreeding. Finally, we found evidence of a significant linear response to inbreeding for all three male reproductive traits and outcrossed seed, indicating that inbreeding depression was primarily caused by partially or fully recessive deleterious alleles. Variation in genetic load was associated with variation in self-fertility, a finding that suggests an evolutionary role for partial self-fertility in natural populations of C. rapunculoides.  相似文献   

17.
Escobar JS  Nicot A  David P 《Genetics》2008,180(3):1593-1608
Understanding how parental distance affects offspring fitness, i.e., the effects of inbreeding and outbreeding in natural populations, is a major goal in evolutionary biology. While inbreeding is often associated with fitness reduction (inbreeding depression), interpopulation outcrossing may have either positive (heterosis) or negative (outbreeding depression) effects. Within a metapopulation, all phenomena may occur with various intensities depending on the focal population (especially its effective size) and the trait studied. However, little is known about interpopulation variation at this scale. We here examine variation in inbreeding depression, heterosis, and outbreeding depression on life-history traits across a full-life cycle, within a metapopulation of the hermaphroditic snail Physa acuta. We show that all three phenomena can co-occur at this scale, although they are not always expressed on the same traits. A large variation in inbreeding depression, heterosis, and outbreeding depression is observed among local populations. We provide evidence that, as expected from theory, small and isolated populations enjoy higher heterosis upon outcrossing than do large, open populations. These results emphasize the need for an integrated theory accounting for the effects of both deleterious mutations and genetic incompatibilities within metapopulations and to take into account the variability of the focal population to understand the genetic consequences of inbreeding and outbreeding at this scale.  相似文献   

18.
Matings between relatives lead to a decrease in offspring genetic diversity which can reduce fitness, a phenomenon known as inbreeding depression. Because alpine ungulates generally live in small structured populations and often exhibit a polygynous mating system, they are susceptible to inbreeding. Here, we used marker-based measures of pairwise genetic relatedness and inbreeding to investigate the fitness consequences of matings between relatives in a long-term study population of mountain goats ( Oreamnos americanus ) at Caw Ridge, Alberta, Canada. We first assessed whether individuals avoided mating with kin by comparing actual and random mating pairs according to their estimated genetic relatedness, which was derived from 25 unlinked polymorphic microsatellite markers and reflected pedigree relatedness. We then examined whether individual multilocus heterozygosity H , used as a measure of inbreeding, was predicted by parental relatedness and associated with yearling survival and the annual probability of giving birth to a kid in adult females. Breeding pairs identified by genetic parentage analyses of offspring that survived to 1 year of age were less genetically related than expected under random matings. Parental relatedness was negatively correlated with offspring H , and more heterozygous yearlings had higher survival to 2 years of age. The probability of giving birth was not affected by H in adult females. Because kids that survived to yearling age were mainly produced by less genetically related parents, our results suggest that some individuals experienced inbreeding depression in early life. Future research will be required to quantify the levels of gene flow between different herds, and evaluate their effects on population genetic diversity and dynamics.  相似文献   

19.
Indirect benefits of mate choice result from increased offspring genetic quality and may be important drivers of female behaviour. ‘Good‐genes‐for‐viability’ models predict that females prefer mates of high additive genetic value, such that offspring survival should correlate with male attractiveness. Mate choice may also vary with genetic diversity (e.g. heterozygosity) or compatibility (e.g. relatedness), where the female's genotype influences choice. The relative importance of these nonexclusive hypotheses remains unclear. Leks offer an excellent opportunity to test their predictions, because lekking males provide no material benefits and choice is relatively unconstrained by social limitations. Using 12 years of data on lekking lance‐tailed manakins, Chiroxiphia lanceolata, we tested whether offspring survival correlated with patterns of mate choice. Offspring recruitment weakly increased with father attractiveness (measured as reproductive success, RS), suggesting attractive males provide, if anything, only minor benefits via offspring viability. Both male RS and offspring survival until fledging increased with male heterozygosity. However, despite parent–offspring correlation in heterozygosity, offspring survival was unrelated to its own or maternal heterozygosity or to parental relatedness, suggesting survival was not enhanced by heterozygosity per se. Instead, offspring survival benefits may reflect inheritance of specific alleles or nongenetic effects. Although inbreeding depression in male RS should select for inbreeding avoidance, mates were not less related than expected under random mating. Although mate heterozygosity and relatedness were correlated, selection on mate choice for heterozygosity appeared stronger than that for relatedness and may be the primary mechanism maintaining genetic variation in this system despite directional sexual selection.  相似文献   

20.
Inbreeding causes reduction of genetic variability that may have severe fitness consequences. In spite of its potentially huge impact on viability and evolutionary processes especially in small populations, quantitative demonstrations of genetic and demographic effects of inbreeding in natural populations are few. Here, we examine the relationship between individual inbreeding coefficients (F) and individual standardized multilocus heterozygosity (H) in an insular metapopulation of house sparrows (Passer domesticus) in northern Norway in order to evaluate whether H is a good predictor for F. We then relate variation in fitness (i.e. the probability of surviving from fledging to recruitment) to F and H, which enables us to examine whether inbreeding depression is associated with a reduction in genetic variability. The average level of inbreeding in the house sparrow metapopulation was high, and there was large inter-individual variation in F. As expected, standardized multilocus heterozygosity decreased with the level of inbreeding. The probability of recruitment was significantly negatively related to F, and, accordingly, increased with H. However, H explained no significant additional variation in recruitment rate than was explained by F. This suggests that H is a good predictor for F in this metapopulation, and that an increase in F is likely to be associated with a general increase in the level of homozygosity on loci across the genome, which has severe fitness consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号