首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Obesity and its associated metabolic diseases represent some of the most rapidly expanding health issues worldwide, and, thus, the development of a novel chemical compound to suppress adipogenesis is strongly expected. We herein investigated the effects of water-soluble fullerene derivatives: a bis-malonic acid derivative and three types of proline-type fullerene derivatives, on adipogenesis using NIH-3T3 cells overexpressing PPARγ. One of the proline-type fullerene derivatives (P3) harboring three carboxy groups significantly inhibited lipid accumulation and the expression of adipocyte-specific genes, such as aP2, induced by the PPARγ agonist rosiglitazone. On the other hand, the bis-malonic acid derivative (M) and the 2 other proline-type fullerene derivatives (P1, P2), which have two carboxy groups, had no effect on PPARγ-mediated lipid accumulation or the expression of aP2. P3 fullerene also inhibited lipid accumulation induced by the combined stimulation with 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, and insulin in 3T3-L1 preadipocytes. During the differentiation of 3T3-L1 cells into adipocytes, P3 fullerene did not affect the expression of C/EBPδ, C/EBPβ, or PPARγ, but markedly inhibited that of aP2 mRNA. These results suggest that P3 fullerene exhibits anti-obesity activity by preventing the activation of PPARγ.  相似文献   

3.
4.
Here, we show that Elovl3 (elongation of very long-chain fatty acids 3) was involved in the regulation of the progression of adipogenesis through activation of peroxisome proliferator-activated receptor (PPAR)γ in mouse adipocytic 3T3-L1 cells. The expression of the Elovl3 gene increased during adipogenesis, the expression pattern of which was similar to that of the PPARγ gene. Troglitazone, a PPARγ agonist, enhanced Elovl3 expression in adipocytes, as it did that of other PPARγ target genes. Promoter-reporter analysis demonstrated that three PPAR-responsive elements in the Elovl3 gene promoter had the potential to activate its expression in 3T3-L1 cells. Moreover, a chromatin immunoprecipitation assay revealed that PPARγ bound these PPAR-responsive elements of the Elovl3 promoter. When the Elovl3 mRNA level was suppressed by its siRNAs, the level of intracellular triglycerides was significantly decreased, and the expression levels of adipogenic, lipolytic, and lipogenic genes were also repressed. In a mammalian two-hybrid assay, C18:1 and C20:1 very long-chain fatty acids (VLCFAs), which are the products of Elovl3 and activated PPARγ function. In addition, these same VLCFAs could prevent the Elovl3 siRNA-mediated suppression of adipogenesis by enhancing the expression of adipogenic, lipolytic, and lipogenic genes in adipocytes. Moreover, this VLCFAs-mediated activation was repressed by a PPARγ antagonist. These results indicate that the expression of the Elovl3 gene was activated by PPARγ during adipogenesis. Elovl3-produced C18:1 and C20:1 VLCFAs acted as agonists of PPARγ in 3T3-L1 cells. Thus, the Elovl3-PPARγ cascade is a novel regulatory circuit for the regulation of adipogenesis through improvement of PPARγ function in adipocytes.  相似文献   

5.
6.
A novel class of insulin-sensitizing agents, the thiazolidinedines (TZDs), has proven effective in the treatment of type 2 diabetes. These compounds, as well as a subclass of non-TZD insulin-sensitizing agents, have been shown to be peroxisome proliferator-activated receptor (PPAR) gamma agonists. PPARgamma plays a critical role in adipogenesis and PPARgamma agonists have been shown to induce adipocyte differentiation. Here, PPARgamma ligand activity has been assessed in murine 3T3-L1 cells, a commonly used in vitro model of adipogenesis, by measuring their ability to induce adipocyte fatty acid-binding protein (aP2) mRNA expression. In order to perform this task, we have developed a novel, multiwell assay for the direct detection of aP2 mRNA in cell lysates that is based on hybridization of mRNA to target-specific oligonucleotides. These oligonucleotide probes are conjugated to enzymes that efficiently process unique chemical substrates into robust fluorescent products. Ribosomal protein 36B4 mRNA, a gene whose expression is unaffected by adipogenesis, serves as the control in the assay. Two assay formats have been developed, a single analyte assay in which aP2 and 36B4 mRNA expression are assayed in separate lysate aliquots and a dual analyte assay which can measure aP2 and 36B4 mRNA simultaneously. Both forms of the assay have been used to quantify attomole levels of aP2 and 36B4 mRNAs in differentiating 3T3-L1 preadipocytes treated with PPARgamma agonists. The potencies of PPARgamma agonists determined by this novel methodology showed good correlation with those derived from aP2 mRNA slot-blot analysis and PPARgamma transactivation assays. We conclude that the aP2 single and dual analyte assays both provide specific and sensitive measurements of endogenous aP2 mRNA levels that can be used to assess the activity of PPARgamma ligands in 3T3-L1 cells. Since the assay obviates the need for RNA isolation and is performed in an automatable multiwell format, it can serve as a high-throughput, cell-based screen for the identification and characterization of PPARgamma modulators.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
In a previous study, retrofractamide A from the fruit of Piper chaba was shown to promote adipogenesis in 3T3-L1 cells. In the present study, retrofractamide A and its derivatives were synthesized, and their adipogenetic effects in 3T3-L1 cells were examined. Among the tested compounds, an amide composed of 9-(3′,4′-methylenedioxyphenyl)-nona-2E,4E,8E-trienoic acid and an n-butyl or n-pentyl amine showed strongest activity. Moreover, the amide with the n-pentyl amine moiety significantly increased the uptake of 2-deoxyglucose into the cells, and also increased the mRNA levels of adiponectin, peroxisome proliferator-activated receptor γ2 (PPARγ2), glucose transporter 4 (GLUT4), fatty acid-binding protein (aP2), and CCAAT/enhancer-binding protein (C/EBP) α and β in a similar manner as the PPARγ agonist troglitazone, although it had less agonistic activity against PPARγ.  相似文献   

15.
《Phytomedicine》2014,21(5):758-765
Trigonelline is a natural alkaloid mainly found in Trigonella Foenum Graecum (fenugreek) Fabaceae and other edible plants with a variety of medicinal applications. Therefore, we investigated the molecular mechanism of trigonelline (TG) on the inhibition of adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline suppressed lipid droplet accumulation in a concentration (75 and 100 μM) dependent manner. Treatment of adipocyte with of TG down regulates the peroxisome proliferator-activated receptor (PPARγ) and CCAAT element binding protein (C/EBP-α) mRNA expression, which leads to further down regulation of other gene such as adiponectin, adipogenin, leptin, resistin and adipocyte fatty acid binding protein (aP2) as compared with respective control cells on 5th and 10th day of differentiation. Further, addition of triognelline along with troglitazone to the adipocyte attenuated the troglitazone effects on PPARγ mediated differentiation and lipid accumulation in 3T3-L1 cells. Trigonelline might compete against troglitazone for its binding to the PPARγ. In addition, adipocyte treated with trigonelline and isoproterenol separately. Isoproterenol, a lipolytic agent which inhibits the fatty acid synthase and GLUT-4 transporter expression via cAMP mediated pathway, we found that similar magnitude response of fatty acid synthase and GLUT-4 transporter expression in trigonelline treated adipocyte. These results suggest that the trigonelline inhibits the adipogenesis by its influences on the expression PPARγ, which leads to subsequent down regulation of PPAR-γ mediated pathway during adipogenesis. Our findings provide key approach to the mechanism underlying the anti-adipogenic activity of trigonelline.  相似文献   

16.
17.
18.
19.
Adult mice abundantly express neudesin, an extracellular heme-binding protein with neurotrophic activity, in white adipose tissues. At the early stage of adipocyte differentiation during adipogenesis, however, the expression of neudesin decreased transiently. Neudesin-hemin significantly suppressed adipogenesis in 3T3-L1 cells. The knockdown of neudesin by RNA interference markedly promoted adipogenesis in 3T3-L1 cells and decreased MAPK activation during adipocyte differentiation. The addition or knockdown of neudesin affected the expression of C/EBPα and PPARγ but not of C/EBPβ. These findings suggest that neudesin plays a critical role in the early stage of adipocyte differentiation in which C/EBPβ induces PPARγ and C/EBPα expressions, by controlling the MAPK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号