首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

2.
Carbon monoxide (CO) is a classical respiratory inhibitor, but CO-releasing molecules (CO-RMs) have therapeutic value, increasing phagocytosis, and reducing sepsis-induced lethality. CORM-3, Ru(CO)(3) Cl(glycinate), a ruthenium-based carbonyl that liberates CO under physiological conditions, has previously been shown to inhibit bacterial growth and respiration, even at high concentrations of oxygen. Here, we report the effects of CORM-3 on the microaerophilic foodborne pathogen Campylobacter jejuni. Even at CO-RM (i.e., CO) concentrations that exceed dissolved oxygen levels, CORM-3 does not inhibit microaerobic growth. This insensitivity is not due to failure of CORM-3 to penetrate cells, as revealed by assay with extracellular myoglobin and by the ability of CO from externally added CORM-3 to bind intracellular membrane-associated respiratory oxidases. Even at almost 200 μ M oxygen, CORM-3 inhibits formate-dependent respiration and leads to generation of hydrogen peroxide. This work shows that CO-RMs have valuable properties as antimicrobial agents; however, growth inhibition does not always accompany inhibition of respiration, even when ambient oxygen concentrations are low.  相似文献   

3.
Carbon monoxide-releasing molecules (CO-RMs) emulate the beneficial (e.g., anti-inflammatory) effects of CO in biology. CO release from CO-RMs is routinely determined in the presence of reduced deoxy-myoglobin by measuring the formation of carboxy-myoglobin (Mb-CO). Previous studies have highlighted discrepancies between the apparent CO release rates of some CO-RMs established using this assay versus other experimental data where a slower or more complex mechanism of release is suggested. It has been hypothesized that some CO-RMs require a CO acceptor, believed to be reduced myoglobin in Mb-CO assays, in order to facilitate the release of CO. Here, we show, for the first time, that CO is not liberated from the ruthenium (Ru)-based [Ru(CO)(3)Cl(2)](2) (CORM-2) and [Ru(CO)(3)Cl(glycinate)] (CORM-3) at an appreciable rate in the presence of reduced myoglobin alone. Rather, we confirm that it is the reducing agent sodium dithionite that facilitates release of CO from these CO-RMs. Other sulfite compounds, namely sodium sulfite and potassium metabisulfite, also promote the liberation of CO from CORM-3. We describe an alternative oxy-hemoglobin assay that eliminates dithionite and suggest that the efficacy of CO-RMs results from intracellular interactions with anions that facilitate CO delivery to therapeutic targets.  相似文献   

4.
Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections.  相似文献   

5.
Heme oxygenase (HO) catalyzes the breakdown of heme to iron, carbon monoxide (CO), and biliverdin, the latter being further reduced to bilirubin (BR). A protective role of the inducible isoform, HO-1, has been described in pathological conditions associated with reactive oxygen species (ROS) and oxidative damage. The aim of this study was to investigate the role of HO-1 in the neurotoxicity induced by the mitochondrial toxin 3-nitropropionic acid (3-NP) in primary cultures of cerebellar granule neurons (CGNs). Toxicity of 3-NP is associated with ROS production, and this metabolic toxin has been used to mimic pathological conditions such as Huntington's disease. We found that cell death caused by 3-NP exposure was exacerbated by inhibition of HO with tin mesoporphyrin (SnMP). In addition, HO-1 up-regulation induced by the exposure to cobalt protoporphyrin (CoPP) before the incubation with 3-NP, prevented the cell death and the increase in ROS induced by 3-NP. Interestingly, addition of SnMP to CoPP-pretreated CGNs exposed to 3-NP, abolished the protective effect of CoPP suggesting that HO activity was responsible for this protective effect. This was additionally supported by the fact that CORM-2, a CO-releasing molecule, and BR, were able to protect against cell death and the increase in ROS induced by 3-NP. Our data clearly show that HO-1 elicits in CGNs a neuroprotective action against the neurotoxicity of 3-NP and that CO and BR may be involved, at least in part, in this protective effect. The present results increase our knowledge about the role of HO-1 in neuropathological conditions.  相似文献   

6.
Carbon monoxide (CO), one of the end products of heme oxygenase activity, inhibits smooth muscle proliferation by decreasing ERK1/2 phosphorylation and cyclin D1 expression, a signaling pathway that is known to be modulated by reactive oxygen species (ROS) in airway smooth muscle cells (ASMCs). Two important sources of ROS involved in cell signaling are the membrane NAD(P)H oxidase and the mitochondrial respiratory chain. Thus, that CO could modulate redox signaling in ASMCs by interacting with the heme moiety of NAD(P)H oxidase and/or the respiratory chain is a plausible hypothesis. Here we show that a recently identified carbon monoxide-releasing molecule, [Ru(CO)3Cl2]2 (or CORM-2) 1) inhibits NAD(P)H oxidase cytochrome b558 activity, 2) increases oxidant production by the mitochondria, and 3) inhibits ASMC proliferation and phosphorylation of the ERK1/2 mitogen-activated protein kinase and expression of cyclin D1, two critical pathways involved in muscle proliferation. No such effects were observed with the negative control (Ru(Me2SO)4Cl2), which does not contain CO groups. Because both diphenylene iodinium or apocynin (inhibitors of NAD(P)H oxidase) and rotenone (a molecule that increases mitochondrial ROS production by blocking the respiratory chain) mimicked the effect of CORM-2 on cyclin D1 expression and ASMC proliferation, the antiproliferative effect of CORM-2 is probably related to inhibition of cytochromes on both NAD(P)H oxidase and the respiratory chain. The involvement of increased mitochondria-derived oxidants is substantiated by the findings showing that the antioxidant N-acetylcysteine partially inhibited the effects of CORM-2. This study provides a new mechanism to explain redox signaling by CO.  相似文献   

7.
8.
The diving lifestyle of seals depends upon cardiovascular adjustments that result in frequent vasoconstriction of numerous organs. With the first post-dive breath, reperfusion allows for eliminating accumulated carbon dioxide (CO(2)) and reloading oxygen (O(2)) stores. Reintroduction of oxygenated blood raises the potential for production of reactive oxygen species (ROS) and the possibility that they may overwhelm the antioxidant defenses. This study addresses the question of possible adaptive responses that allow ringed seal (Phoca hispida) tissues to tolerate repeated cycles of ischemia and reperfusion, and thus protect them from oxidative insult. We obtained samples of ringed seal heart, muscle and kidney through the cooperation of native subsistence hunters at Barrow, Alaska. Samples were subjected to oxidative stress by addition of xanthine oxidase. Production of superoxide radical (O(2)(.-)), lipid peroxidation (as determined by the presence of thiobarbituric acid reactive substances, TBARS) and antioxidant capacity (AOX) were quantified by spectrophotometric analysis. Similarly treated pig tissues were anticipated to be more susceptible to oxidative stress. Contrary to expectations, pig tissues revealed less O(2)(.-) and TBARS compared with ringed seal tissues. These results show that ringed seal muscle, heart and kidney can be induced in vitro to generate ROS, and suggest that the living seal's protective defenses may depend upon O(2)(.-) production, similar to the protective effect of experimental preconditioning, or on enhanced intermediate scavenging, as evidenced by the larger AOX found in ringed seal tissues.  相似文献   

9.
Chen TH  Hsu YT  Chen CH  Kao SH  Lee HM 《Mitochondrion》2007,7(1-2):101-105
Tanshinone IIA exerts anti-inflammatory effects and influences electron transfer reaction in mitochondria. In the present study, we demonstrated that tanshinone IIA increased intracellular production of reactive oxygen species (ROS), which in turn induces heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophages. Tanshinone IIA inhibited COX-2 and iNOS expression in lipopolysaccharide-activated RAW 264.7 macrophages. Inhibition of HO-1 or scavenging of CO significantly reversed the inhibition of LPS-stimulated nitrite accumulation by tanshinone IIA, suggesting a novel role of HO-1 in the anti-inflammatory effect of tanshinone IIA.  相似文献   

10.

Background

Carbon monoxide (CO) synthesized by heme oxygenase 1 (HO-1) exerts antinociceptive effects during inflammation but its role during neuropathic pain remains unknown. Our objective is to investigate the exact contribution of CO derived from HO-1 in the modulation of neuropathic pain and the mechanisms implicated.

Methodology/Principal Findings

We evaluated the antiallodynic and antihyperalgesic effects of CO following sciatic nerve injury in wild type (WT) or inducible nitric oxide synthase knockout (NOS2-KO) mice using two carbon monoxide-releasing molecules (CORM-2 and CORM-3) and an HO-1 inducer (cobalt protoporphyrin IX, CoPP) daily administered from days 10 to 20 after injury. The effects of CORM-2 and CoPP on the expression of HO-1, heme oxygenase 2 (HO-2), neuronal nitric oxide synthase (NOS1) and NOS2 as well as a microglial marker (CD11b/c) were also assessed at day 20 after surgery in WT and NOS2-KO mice. In WT mice, the main neuropathic pain symptoms induced by nerve injury were significantly reduced in a time-dependent manner by treatment with CO-RMs or CoPP. Both CORM-2 and CoPP treatments increased HO-1 expression in WT mice, but only CoPP stimulated HO-1 in NOS2-KO animals. The increased expression of HO-2 induced by nerve injury in WT, but not in NOS2-KO mice, remains unaltered by CORM-2 or CoPP treatments. In contrast, the over-expression of CD11b/c, NOS1 and NOS2 induced by nerve injury in WT, but not in NOS2-KO mice, were significantly decreased by both CORM-2 and CoPP treatments. These data indicate that CO alleviates neuropathic pain through the reduction of spinal microglial activation and NOS1/NOS2 over-expression.

Conclusions/Significance

This study reports that an interaction between the CO and nitric oxide (NO) systems is taking place following sciatic nerve injury and reveals that increasing the exogenous (CO-RMs) or endogenous (CoPP) production of CO may represent a novel strategy for the treatment of neuropathic pain.  相似文献   

11.
CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) is an antifungal and chemosensitizing agent that induces oxidative stress in yeast and filamentous fungi and enhances the cytotoxic activity of 5-fluorocytosine and azole antimycotics. This study reports the effect of CTBT on bacterial cells. CTBT inhibited the growth of both Gram-positive and Gram-negative bacterial species. The action of CTBT was bactericidal. In Escherichia coli, CTBT induced an increased formation of reactive oxygen species (ROS), as determined with a ROS specific probe 2′,7′-dichlorodihydrofluorescein diacetate. In zone inhibition assays, bacterial cells were more sensitive to CTBT compared with paraquat, menadione and hydrogen peroxide. The deletion of oxidative stress related genes resulted in increased susceptibility of E. coli mutant strains to CTBT treatment. Exogenous antioxidants such as ascorbic acid, cysteine and glutathione exhibited a protective effect against the growth inhibition induced by CTBT. CTBT may be a useful tool in the studies of ROS generation, oxidant sensing and oxidative stress response in different bacterial species.  相似文献   

12.
Cyclo(phenylalanine‐proline) is produced by various organisms such as animals, plants, bacteria and fungi. It has diverse biological functions including anti‐fungal activity, anti‐bacterial activity and molecular signalling. However, a few studies have demonstrated the effect of cyclo(phenylalanine‐proline) on the mammalian cellular processes, such as cell growth and apoptosis. In this study, we investigated whether cyclo(phenylalanine‐proline) affects cellular responses associated with DNA damage in mammalian cells. We found that treatment of 1 mM cyclo(phenylalanine‐proline) induces phosphorylation of H2AX (S139) through ATM‐CHK2 activation as well as DNA double strand breaks. Gene expression analysis revealed that a subset of genes related to regulation of reactive oxygen species (ROS) scavenging and production is suppressed by the cyclo(phenylalanine‐proline) treatment. We also found that cyclo(phenylalanine‐proline) treatment induces perturbation of the mitochondrial membrane, resulting in increased ROS, especially superoxide, production. Collectively, our study suggests that cyclo(phenylalanine‐proline) treatment induces DNA damage via elevation of ROS in mammalian cells. Our findings may help explain the mechanism underlying the bacterial infection‐induced activation of DNA damage response in host mammalian cells.  相似文献   

13.
Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.  相似文献   

14.
Drug resistance to 5-FU linked to reactive oxygen species modulator 1   总被引:1,自引:0,他引:1  
While acute oxidative stress triggers cell apoptosis or necrosis, persistent oxidative stress induces genomic instability and has been implicated in tumor progression and drug resistance. In a previous report, we demonstrated that reactive oxygen species modulator 1 (Romo1) expression was up-regulated in most cancer cell lines and suggested that increased Romo1 expression might confer chronic oxidative stress to tumor cells. In this study, we show that enforced Romo1 expression induces reactive oxygen species (ROS) production in the mitochondria leading to massive cell death. However, tumor cells that adapt to oxidative stress by increasing manganese superoxide dismutase (MnSOD), Prx I, and Bcl-2 showed drug resistance to 5-FU. To elucidate the relationship between 5-FU-induced ROS production and Romo1 expression, Romo1 siRNA was used to inhibit 5-FU-triggered Romo1 induction. Romo1 siRNA treatment efficiently blocked 5-FU-induced ROS generation, demonstrating that 5-FU treatment stimulated ROS production through Romo1 induction. Based on these results we suggest that cellular adaptive response to Romo1-induced ROS is another mechanism of drug resistance to 5-FU and Romo1 expression may provide a new clinical implication in drug resistance of cancer chemotherapy.  相似文献   

15.
16.
Carbon monoxide (CO) is produced endogenously by heme oxygenase (HO) enzymes. HO-1 is highly expressed in many inflammatory disease states, where it is broadly protective. The protective effects of HO-1 expression can be largely mimicked by the exogenous application of CO and CO-releasing molecules (CORMs). Despite a dearth of pharmacological tools for their study, molecular methodologies have identified P2X4 receptors as a potential anti-nociceptive drug target. P2X4 receptors are up-regulated in animal models of inflammatory pain, and their knock-down reduces pain behaviours. In these same animal models, HO-1 expression is anti-nociceptive, and we therefore investigated whether P2X4 was a target for CO and tricarbonyldichlororuthenium (II) dimer (CORM-2). Using conventional whole-cell and perforated-patch recordings of heterologously expressed human P2X4 receptors, we demonstrate that CORM-2, but not CO gas, is an inhibitor of these channels. We also investigated the role of soluble guanylate cyclase and mitochondria-derived reactive oxygen species using pharmacological inhibitors but found that they were largely unable to affect the ability of CORM-2 to inhibit P2X4 currents. A control breakdown product of CORM-2 was also without effect on P2X4. These results suggest that P2X4 receptors are not a molecular target of endogenous CO production and are, therefore, unlikely to be mediating the anti-nociceptive effects of HO-1 expression in inflammatory pain models. However, these results show that CORM-2 is an effective antagonist at human P2X4 receptors and represents a useful pharmacological tool for the study of these receptors given the current dearth of antagonists.  相似文献   

17.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.  相似文献   

18.
The ability to sense and adapt to a wide variety of environmental changes is crucial for the survival of all cells. Transient receptor potential (TRP) channels play pivotal roles in these sensing and adaptation reactions. In vertebrates, there are about 30 TRP channels; these are divided into six subfamilies by homology of the protein sequences. We have previously revealed that a group of TRP channels senses oxidative stress and induces cellular signaling and gene expression. TRPM2, a member of the TRPM subfamily, is activated by reactive oxygen species (ROS) via second-messenger production. Recently, we demonstrated that Ca2+ influx through TRPM2 activated by ROS induces chemokine production in monocytes, which aggravates inflammatory neutrophil infiltration. Additionally, we also revealed that nitric oxide, chemical compounds containing reactive disulfide, and inflammatory mediators directly activate the TRPC, TRPV, and TRPA subfamilies via oxidative modification of cysteine residues. In this review, we describe how these TRP channels sense oxidative stress and induce adaptation reactions, and we discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

19.
Free radical scavenging effects of the cellular protein extracts from two strains of Deinococcus radiodurans and Escherichia coli against O2-, H2O2 and *OH were investigated by chemiluminescence (CL) methods. The cellular protein extracts of D. radiodurans R1 and KD8301 showed higher scavenging effects on O2- than that of E. coli. D. radiodurans R1 and KD8301 also strongly scavenged H2O2 with an EC50 (50% effective concentration) of 0.12 and 0.2 mg/mL, respectively, compared to that of E. coli (EC50 = 3.56 mg/mL). The two strains of D. radiodurans were effective in scavenging *OH generated by the Fenton reaction, with EC50 of 0.059 and 0.1 mg/mL, respectively, compared to that of E. coli (EC50 > 1 mg/mL). Results from the chemiluminescence assay of *OH-induced DNA damage and the plasmid pUC18 DNA double-strand break (DSB) model in vitro showed that D. radiodurans had remarkably inhibitory effect on the *OH-induced oxidative damage of DNA. The scavenging effects of D. radiodurans on reactive oxygen species (ROS) played an important role in the response to oxidation stress and preventing against DNA oxidative damage, and may be attributed to intracellular scavenging proteins, including superoxide dismutase (SOD) and catalase.  相似文献   

20.
In previous experiments we were able to separate, using a nondestructive separation technique, culturable and nonculturable bacteria, from a Luria-Bertani (LB) medium culture of Escherichia coli incubated for 48 h. We observed in the nonculturable bacterial population an increase in oxidative damage and up-induction of most defenses against reactive oxygen species (ROS), along with a decrease in cytoplasmic superoxide dismutases. In this study, using the same separation technique, we separated into two subpopulations a 10-h LB medium culture containing only culturable bacteria. For the first time, we succeeded in associating physical separation with physiological differences. Although the levels of defense against ROS (RpoS, RpoH, OxyR, and SoxRS regulons) and oxidative damage (carbonyl contents) were apparently the same, we found that bacteria in one subpopulation were more sensitive to LB medium starvation and to various stresses, such as phosphate buffer starvation, heat shock, and hydrogen peroxide exposure. Based on these results, we suggest that these physiological differences reflect uncharacterized bacterial modifications which do not directly involve defenses against ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号